WhisperBot:整合了Mistral大型语言模型的实时语音转文本系统

项目简介

欢迎来到 WhisperBot。WhisperBot 基于 WhisperLive 和 WhisperSpeech 的功能而构建,在实时语音到文本管道之上集成了大型语言模型 Mistral (LLM)。WhisperLive 依赖于 OpenAI Whisper,这是一个强大的自动语音识别 (ASR) 系统。Mistral 和 Whisper 都经过优化,可作为 TensorRT 引擎高效运行,从而最大限度地提高性能和实时处理能力。

特征

  • 实时语音转文本:利用 OpenAI WhisperLive 将口语实时转换为文本。

  • 大型语言模型集成:添加大型语言模型 Mistral,以增强对转录文本的理解和上下文。

  • TensorRT 优化:Mistral 和 Whisper 都经过优化,可作为 TensorRT 引擎运行,确保高性能和低延迟处理。

先决条件

安装 TensorRT-LLM 来构建 Whisper 和 Mistral TensorRT 引擎。自述文件为 TensorRT-LLM 构建了一个 docker 镜像。除了构建 docker 镜像之外,我们还可以参考 README 和 Dockerfile.multi 在基础 pytroch docker 镜像中安装所需的包。只要确保使用 dockerfile 中提到的正确的基础镜像,一切都会顺利进行。

构建 Whisper TensorRT 引擎

构建 Mistral TensorRT 引擎

  • 将工作目录更改为 TensorRT-LLM 文件夹中的 llama 示例目录。

    cd TensorRT-LLM/examples/llama

  • 将 Mistral 转换为 fp16 TensorRT 引擎。

    复制代码
    python build.py --model_dir teknium/OpenHermes-2.5-Mistral-7B \
                    --dtype float16 \
                    --remove_input_padding \
                    --use_gpt_attention_plugin float16 \
                    --enable_context_fmha \
                    --use_gemm_plugin float16 \
                    --output_dir ./tmp/mistral/7B/trt_engines/fp16/1-gpu/ \
                    --max_input_len 5000
                    --max_batch_size 1

构建 Phi TensorRT 引擎

注意:Phi 仅在主分支可用,尚未发布。因此,请确保从主分支构建 TensorRT-LLM。

  • 将工作目录更改为 TensorRT-LLM 文件夹中的 phi 示例目录。

    cd TensorRT-LLM/examples/phi

  • 构建 phi TensorRT 引擎

    git lfs install
    git clone https://huggingface.co/microsoft/phi-2
    python3 build.py --dtype=float16
    --log_level=verbose
    --use_gpt_attention_plugin float16
    --use_gemm_plugin float16
    --max_batch_size=16
    --max_input_len=1024
    --max_output_len=1024
    --output_dir=phi_engine
    --model_dir=phi-2>&1 | tee build.log

项目链接

https://github.com/collabora/WhisperBot

相关推荐
NEXT062 分钟前
拒绝“盲盒式”编程:规范驱动开发(SDD)如何重塑 AI 交付
前端·人工智能·markdown
liuzhijie-061410 分钟前
【AI 使用案例】如何使用 AI 进行代码调试
人工智能
阿杰学AI18 分钟前
AI核心知识105—大语言模型之 Multi-Agent Architect(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·agent·智能体·多智能体架构师
nita张18 分钟前
战略定位实战:案例分享与经验总结
大数据·人工智能·python
云器科技29 分钟前
AI × Lakehouse:云器Lakehouse + Datus 从SQL查询到自然语言交互,扩展数据团队的能力边界
大数据·人工智能·数据库架构·数据平台·湖仓平台
神州问学34 分钟前
【技术加速器】当 AI Coding 从“辅助”走向“主力”:Claude Code 与 Skills 的真实使用笔记
人工智能·ai coding
小润nature35 分钟前
Pencil.dev与NXP GUI Guider (LVGL Pro) 图形库上位机软件的深度对比
人工智能
文艺倾年37 分钟前
【源码精讲+简历包装】LeetcodeRunner—手搓调试器轮子(20W字-上)
java·jvm·人工智能·tomcat·编辑器·guava
自动化代码美学1 小时前
【AI白皮书】AI安全
人工智能·安全
紫微AI1 小时前
OpenClaw:从周末实验到现象级开源 AI 代理
人工智能·开源