WhisperBot:整合了Mistral大型语言模型的实时语音转文本系统

项目简介

欢迎来到 WhisperBot。WhisperBot 基于 WhisperLive 和 WhisperSpeech 的功能而构建,在实时语音到文本管道之上集成了大型语言模型 Mistral (LLM)。WhisperLive 依赖于 OpenAI Whisper,这是一个强大的自动语音识别 (ASR) 系统。Mistral 和 Whisper 都经过优化,可作为 TensorRT 引擎高效运行,从而最大限度地提高性能和实时处理能力。

特征

  • 实时语音转文本:利用 OpenAI WhisperLive 将口语实时转换为文本。

  • 大型语言模型集成:添加大型语言模型 Mistral,以增强对转录文本的理解和上下文。

  • TensorRT 优化:Mistral 和 Whisper 都经过优化,可作为 TensorRT 引擎运行,确保高性能和低延迟处理。

先决条件

安装 TensorRT-LLM 来构建 Whisper 和 Mistral TensorRT 引擎。自述文件为 TensorRT-LLM 构建了一个 docker 镜像。除了构建 docker 镜像之外,我们还可以参考 README 和 Dockerfile.multi 在基础 pytroch docker 镜像中安装所需的包。只要确保使用 dockerfile 中提到的正确的基础镜像,一切都会顺利进行。

构建 Whisper TensorRT 引擎

构建 Mistral TensorRT 引擎

  • 将工作目录更改为 TensorRT-LLM 文件夹中的 llama 示例目录。

    cd TensorRT-LLM/examples/llama

  • 将 Mistral 转换为 fp16 TensorRT 引擎。

    复制代码
    python build.py --model_dir teknium/OpenHermes-2.5-Mistral-7B \
                    --dtype float16 \
                    --remove_input_padding \
                    --use_gpt_attention_plugin float16 \
                    --enable_context_fmha \
                    --use_gemm_plugin float16 \
                    --output_dir ./tmp/mistral/7B/trt_engines/fp16/1-gpu/ \
                    --max_input_len 5000
                    --max_batch_size 1

构建 Phi TensorRT 引擎

注意:Phi 仅在主分支可用,尚未发布。因此,请确保从主分支构建 TensorRT-LLM。

  • 将工作目录更改为 TensorRT-LLM 文件夹中的 phi 示例目录。

    cd TensorRT-LLM/examples/phi

  • 构建 phi TensorRT 引擎

    git lfs install
    git clone https://huggingface.co/microsoft/phi-2
    python3 build.py --dtype=float16
    --log_level=verbose
    --use_gpt_attention_plugin float16
    --use_gemm_plugin float16
    --max_batch_size=16
    --max_input_len=1024
    --max_output_len=1024
    --output_dir=phi_engine
    --model_dir=phi-2>&1 | tee build.log

项目链接

https://github.com/collabora/WhisperBot

相关推荐
没学上了5 分钟前
Vlm-BERT简介
人工智能·深度学习·bert
独自破碎E6 分钟前
怎么实现AI的多轮对话功能?
人工智能
阿豪Jeremy14 分钟前
bert-base-chinese-ner微调总结——针对“领域实体微调”及“增量实体微调”任务
人工智能·深度学习·bert
KG_LLM图谱增强大模型26 分钟前
知识图谱+大模型“驱动的生物制药企业下一代主数据管理:Neo4j知识图谱与GraphRAG及GenAI的深度整合
人工智能·大模型·知识图谱
DisonTangor28 分钟前
【DeepSeek拥抱开源】通过可扩展查找实现的条件记忆:大型语言模型稀疏性的新维度
人工智能·语言模型·自然语言处理
lkbhua莱克瓦2429 分钟前
稠密、稀疏与MoE:大模型时代的三重架构革命
人工智能·深度学习·机器学习·ai·架构
反向跟单策略29 分钟前
期货反向跟单-贵金属牛市中的反向跟单密码
大数据·人工智能·学习·数据分析·区块链
K姐研究社29 分钟前
实测百度文库AI PPT制作,一键排版美化生成专业PPT
人工智能·百度·powerpoint
万邦科技Lafite30 分钟前
阿里巴巴商品详情API返回值:电商精准营销的关键
大数据·数据库·人工智能·电商开放平台
TMT星球36 分钟前
康迪科技携核心电动产品亮相AIMExpo,渠道拓展再提速
人工智能·科技