WhisperBot:整合了Mistral大型语言模型的实时语音转文本系统

项目简介

欢迎来到 WhisperBot。WhisperBot 基于 WhisperLive 和 WhisperSpeech 的功能而构建,在实时语音到文本管道之上集成了大型语言模型 Mistral (LLM)。WhisperLive 依赖于 OpenAI Whisper,这是一个强大的自动语音识别 (ASR) 系统。Mistral 和 Whisper 都经过优化,可作为 TensorRT 引擎高效运行,从而最大限度地提高性能和实时处理能力。

特征

  • 实时语音转文本:利用 OpenAI WhisperLive 将口语实时转换为文本。

  • 大型语言模型集成:添加大型语言模型 Mistral,以增强对转录文本的理解和上下文。

  • TensorRT 优化:Mistral 和 Whisper 都经过优化,可作为 TensorRT 引擎运行,确保高性能和低延迟处理。

先决条件

安装 TensorRT-LLM 来构建 Whisper 和 Mistral TensorRT 引擎。自述文件为 TensorRT-LLM 构建了一个 docker 镜像。除了构建 docker 镜像之外,我们还可以参考 README 和 Dockerfile.multi 在基础 pytroch docker 镜像中安装所需的包。只要确保使用 dockerfile 中提到的正确的基础镜像,一切都会顺利进行。

构建 Whisper TensorRT 引擎

构建 Mistral TensorRT 引擎

  • 将工作目录更改为 TensorRT-LLM 文件夹中的 llama 示例目录。

    cd TensorRT-LLM/examples/llama

  • 将 Mistral 转换为 fp16 TensorRT 引擎。

    复制代码
    python build.py --model_dir teknium/OpenHermes-2.5-Mistral-7B \
                    --dtype float16 \
                    --remove_input_padding \
                    --use_gpt_attention_plugin float16 \
                    --enable_context_fmha \
                    --use_gemm_plugin float16 \
                    --output_dir ./tmp/mistral/7B/trt_engines/fp16/1-gpu/ \
                    --max_input_len 5000
                    --max_batch_size 1

构建 Phi TensorRT 引擎

注意:Phi 仅在主分支可用,尚未发布。因此,请确保从主分支构建 TensorRT-LLM。

  • 将工作目录更改为 TensorRT-LLM 文件夹中的 phi 示例目录。

    cd TensorRT-LLM/examples/phi

  • 构建 phi TensorRT 引擎

    git lfs install
    git clone https://huggingface.co/microsoft/phi-2
    python3 build.py --dtype=float16
    --log_level=verbose
    --use_gpt_attention_plugin float16
    --use_gemm_plugin float16
    --max_batch_size=16
    --max_input_len=1024
    --max_output_len=1024
    --output_dir=phi_engine
    --model_dir=phi-2>&1 | tee build.log

项目链接

https://github.com/collabora/WhisperBot

相关推荐
说私域30 分钟前
社群经济视域下智能名片链动2+1模式商城小程序的商业价值重构
人工智能·小程序·重构·开源
NAGNIP5 小时前
GPT-5.1 发布:更聪明,也更有温度的 AI
人工智能·算法
NAGNIP5 小时前
激活函数有什么用?有哪些常用的激活函数?
人工智能·算法
骚戴6 小时前
2025 Python AI 实战:零基础调用 LLM API 开发指南
人工智能·python·大模型·llm·api·ai gateway
Cherry的跨界思维6 小时前
【AI测试全栈:质量模型】4、新AI测试金字塔:从单元到社会的四层测试策略落地指南
人工智能·单元测试·集成测试·ai测试·全栈ai·全栈ai测试·社会测试
亚马逊云开发者6 小时前
使用Amazon Nova模型实现自动化视频高光剪辑
人工智能
Tony Bai6 小时前
Go 的 AI 时代宣言:我们如何用“老”原则,解决“新”问题?
开发语言·人工智能·后端·golang
卤代烃6 小时前
🦾 可为与不可为:CDP 视角下的 Browser 控制边界
前端·人工智能·浏览器
ggabb7 小时前
海南封关:锚定中国制造2025,破解产业转移生死局
大数据·人工智能
_XU7 小时前
AI工具如何重塑我的开发日常
前端·人工智能·深度学习