bert提取词向量比较两文本相似度

使用 bert-base-chinese 预训练模型做词嵌入(文本转向量)

模型下载:bert预训练模型下载-CSDN博客

参考文章:使用bert提取词向量

下面这段代码是一个传入句子转为词向量的函数

python 复制代码
from transformers import BertTokenizer, BertModel
import torch

# 加载中文 BERT 模型和分词器
model_name = "../bert-base-chinese"
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertModel.from_pretrained(model_name)


def get_word_embedding(sentence):
    # 分词
    tokens = tokenizer.tokenize(sentence)
    # 添加特殊标记 [CLS] 和 [SEP]
    tokens = ['[CLS]'] + tokens + ['[SEP]']
    # 将分词转换为对应的编号
    input_ids = tokenizer.convert_tokens_to_ids(tokens)
    # 转换为 PyTorch tensor 格式
    input_ids = torch.tensor([input_ids])

    # 获取词向量
    outputs = model(input_ids)

    # outputs[0]是词嵌入表示
    embedding = outputs[0]
    # 去除头尾标记的向量值
    word_embedding = embedding[:, 1:-1, :]

    return word_embedding

embedding[:, 1:-1, :] 这一行的意是以下,数据类型张量

batch_size, sequence_length, hidden_size\],其中: * `batch_size` 是输入文本的批次大小,即一次输入的文本样本数量。 * `sequence_length` 是输入文本序列的长度,即编码器输入的词的数量。 * `hidden_size` 是隐藏状态的维度大小,是 BERT 模型的超参数,通常为 768 或 1024。 比较两文本相似度 ```python def compare_sentence(sentence1, sentence2): # 分词 tokens1 = tokenizer.tokenize(sentence1) tokens2 = tokenizer.tokenize(sentence2) # 添加特殊标记 [CLS] 和 [SEP] tokens1 = ['[CLS]'] + tokens1 + ['[SEP]'] tokens2 = ['[CLS]'] + tokens2 + ['[SEP]'] # 将分词转换为对应的词表中的索引 input_ids1 = tokenizer.convert_tokens_to_ids(tokens1) input_ids2 = tokenizer.convert_tokens_to_ids(tokens2) # 转换为 PyTorch tensor 格式 input_ids1 = torch.tensor([input_ids1]) input_ids2 = torch.tensor([input_ids2]) # 获取词向量 outputs1 = model(input_ids1) outputs2 = model(input_ids2) # outputs[0]是词嵌入表示 embedding1 = outputs1[0] embedding2 = outputs2[0] # 提取 [CLS] 标记对应的词向量作为整个句子的表示 sentence_embedding1 = embedding1[:, 0, :] sentence_embedding2 = embedding2[:, 0, :] # 计算词的欧氏距离 # 计算p范数距离的函数,其中p设置为2,这意味着它将计算的是欧几里得距离(L2范数) euclidean_distance = torch.nn.PairwiseDistance(p=2) distance = euclidean_distance(sentence_embedding1, sentence_embedding2) # 计算余弦相似度 # dim=1 表示将在第一个维度(通常对应每个样本的特征维度)上计算余弦相似度;eps=1e-6 是为了数值稳定性而添加的一个很小的正数,以防止分母为零 cos = torch.nn.CosineSimilarity(dim=1, eps=1e-6) similarity = cos(sentence_embedding1, sentence_embedding2) print("句1: ", sentence1) print("句2: ", sentence2) print("相似度: ", similarity.item()) print("欧式距离: ", distance.item()) compare_sentence("黄河南大街70号8门", "皇姑区黄河南大街70号8门") ``` ![](https://file.jishuzhan.net/article/1752210077277753346/ad82389aa0cb087a1f018d276a247c2c.webp)

相关推荐
萤丰信息3 分钟前
智慧园区:科技赋能的未来产业生态新载体
大数据·运维·人工智能·科技·智慧园区
ASD123asfadxv10 分钟前
【医疗影像检测】VFNet模型在医疗器械目标检测中的应用与优化
人工智能·目标检测·计算机视觉
小真zzz11 分钟前
2025-2026年AI PPT工具排行榜:ChatPPT的全面领先与竞品格局解析
人工智能·ai·powerpoint·ppt·aippt
翱翔的苍鹰12 分钟前
CIFAR-10 是一个经典的小型彩色图像分类数据集,广泛用于深度学习入门、模型验证和算法研究
深度学习·算法·分类
智慧化智能化数字化方案12 分钟前
详解人工智能安全治理框架(中文版)【附全文阅读】
大数据·人工智能·人工智能安全治理框架
人工智能培训28 分钟前
开源与闭源大模型的竞争未来会如何?
人工智能·机器学习·语言模型·大模型·大模型幻觉·开源大模型·闭源大模型
啊阿狸不会拉杆34 分钟前
《机器学习》第六章-强化学习
人工智能·算法·机器学习·ai·机器人·强化学习·ml
人工智能AI技术35 分钟前
【Agent从入门到实践】21 Prompt工程基础:为Agent设计“思考指令”,简单有效即可
人工智能·python
式5161 小时前
大模型学习基础(九)LoRA微调原理
人工智能·深度学习·学习
CCPC不拿奖不改名1 小时前
python基础面试编程题汇总+个人练习(入门+结构+函数+面向对象编程)--需要自取
开发语言·人工智能·python·学习·自然语言处理·面试·职场和发展