Python Fire:更加灵活的命令行参数

前段时间,介绍过PythonFire库,一个用来生成命令行工具的的库。

请参考:Python Fire:自动生成命令行接口

今天,针对命令行参数,补充两种更加灵活的设置方式。

1. *args 型参数

*args型的参数可以接受任意长度的参数。

比如,模拟一个学校发送通知的功能:

python 复制代码
import fire

def notions(school, *names):
    for name in names:
        print(f"[{school} 通知] hello {name}")


if __name__ == "__main__":
    fire.Fire(notions)

使用起来很灵活,

powershell 复制代码
$  python.exe .\fire-sample.py NJ大学 小红 小李 小张 小华
[NJ大学 通知] hello 小红
[NJ大学 通知] hello 小李
[NJ大学 通知] hello 小张
[NJ大学 通知] hello 小华

$  python.exe .\fire-sample.py --school NJ大学 小红 小李 小张
[NJ大学 通知] hello 小红
[NJ大学 通知] hello 小李
[NJ大学 通知] hello 小张

$  python.exe .\fire-sample.py --school NJ大学 小红 小李 小张 小华
[NJ大学 通知] hello 小红
[NJ大学 通知] hello 小李
[NJ大学 通知] hello 小张
[NJ大学 通知] hello 小华

$  python.exe .\fire-sample.py 小红 小李 --school NJ大学 小张 小华
[NJ大学 通知] hello 小红
[NJ大学 通知] hello 小李
[NJ大学 通知] hello 小张
[NJ大学 通知] hello 小华

从上面使用的示例可看出,

  1. 可以不输入参数名称(比如第一个例子),按照顺序第一参数赋值给school,其余的赋值给*names
  2. *names参数支持不定长度的值
  3. school参数指定参数名的话,可以放在任意的位置(比如上面第四个例子)。

2. **kwargs 型参数

**kwargs 型参数也是不定长度的,和*args型参数不同的地方在于,

使用**kwargs型参数时,需要指定参数名称

比如,模拟一个显示学生成绩的功能:

python 复制代码
import fire

def scores(cls, **students):
    for k, v in students.items():
        print(f"[{cls} 成绩] {k}: {v}")


if __name__ == "__main__":
    fire.Fire(scores)

使用示例如下:

powershell 复制代码
$  python .\fire-sample.py 初三1班 --小红 98 --小李 89 --小王 100
[初三1班 成绩] 小红: 98
[初三1班 成绩] 小李: 89
[初三1班 成绩] 小王: 100

$  python .\fire-sample.py --小红 98 --小李 89 --小王 100  初三1班
[初三1班 成绩] 小红: 98
[初三1班 成绩] 小李: 89
[初三1班 成绩] 小王: 100

$  python .\fire-sample.py --小红 98 --小李 89 --小王 100 --cls 初三1班
[初三1班 成绩] 小红: 98
[初三1班 成绩] 小李: 89
[初三1班 成绩] 小王: 100

cls参数可以不指定名称,也可以放在任意位置上。
**students参数则必须指定参数名称,但参数名称不固定,参数的个数也不固定。

3. 总结

*args型和**kwargs型参数可以有效的缓解命令行工具灵活性不足的问题。

开发命令行工具时,根据自己的场景,使用这两种类型的参数可让命令行工具的接口更加简洁灵活。

相关推荐
ACEEE122213 分钟前
Stanford CS336 | Assignment 2 - FlashAttention-v2 Pytorch & Triotn实现
人工智能·pytorch·python·深度学习·机器学习·nlp·transformer
iChochy1 小时前
[开源免费] iGTTS(Gemini TTS) 文本转语音(TTS)的命令行工具。
python·tts·gemini
TwoAI1 小时前
Scikit-learn:从零开始构建你的第一个机器学习模型
python·机器学习·scikit-learn
跟橙姐学代码1 小时前
Python里的“管家婆”:带你玩转os库的所有神操作
前端·python·ipython
倔强青铜三1 小时前
最强Python Web框架到底是谁?
人工智能·python·面试
ZeroNews内网穿透1 小时前
企业远程访问方案选择:何时选内网穿透,何时需要反向代理?
运维·服务器·网络·python·安全
倔强青铜三1 小时前
苦练Python第45天:使用open函数读取文件内容
人工智能·python·面试
赵谨言1 小时前
基于python人物头像的卡通化算法设计与实现
开发语言·经验分享·python
倔强青铜三1 小时前
苦练Python第43天:datetime和calendar模块的使用
人工智能·python·面试
倔强青铜三1 小时前
苦练Python第44天:math、random、statistics三剑客,带你秒杀数学计算与数据分析
人工智能·python·面试