PyTorch 之 rand() 与 randn() 函数

文章目录

当然,让我更详细地介绍 torch.rand()torch.randn(),以及它们在 PyTorch 中的用法。

torch.rand()

torch.rand(*sizes, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) 生成从均匀分布(在 0 到 1 之间)中抽样的随机数。

  • *sizes: 输出张量每个维度的大小。可以是整数序列或变量数量的参数。
  • out: 如果提供了,结果将被放入此张量。
  • dtype: 输出张量的所需数据类型。
  • layout: 输出张量的所需布局。
  • device: 输出张量的所需设备。
  • requires_grad: 如果为 True,生成的张量将具有 requires_grad 属性,设置为 True,允许进行自动微分。

示例:

python 复制代码
import torch

# 生成一个2x3的张量,其中的元素是在0到1之间的随机值
随机张量 = torch.rand(2, 3)
print(随机张量)

torch.randn()

torch.randn(*sizes, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) 生成从均值为0,标准差为1的正态分布中抽样的随机数。

  • *sizes: 输出张量每个维度的大小。可以是整数序列或变量数量的参数。
  • out: 如果提供了,结果将被放入此张量。
  • dtype: 输出张量的所需数据类型。
  • layout: 输出张量的所需布局。
  • device: 输出张量的所需设备。
  • requires_grad: 如果为 True,生成的张量将具有 requires_grad 属性设置为 True,允许进行自动微分。

示例:

python 复制代码
import torch

# 生成一个2x3的张量,其中的元素是从标准正态分布中抽样得到的随机值
正态随机张量 = torch.randn(2, 3)
print(正态随机张量)

这些函数在神经网络的权重初始化、为测试创建合成数据,以及任何需要随机数的场景中都很有用。根据你的具体用例调整大小和其他参数。

相关推荐
慢半拍iii6 分钟前
CANN算子开发实战:手把手教你基于ops-nn仓库编写Broadcast广播算子
人工智能·计算机网络·ai
历程里程碑14 分钟前
普通数组----合并区间
java·数据结构·python·算法·leetcode·职场和发展·tornado
weixin_3954489114 分钟前
mult_yolov5_post_copy.c_cursor_0205
c语言·python·yolo
User_芊芊君子19 分钟前
CANN数学计算基石ops-math深度解析:高性能科学计算与AI模型加速的核心引擎
人工智能·深度学习·神经网络·ai
小白|22 分钟前
CANN与联邦学习融合:构建隐私安全的分布式AI推理与训练系统
人工智能·机器学习·自动驾驶
艾莉丝努力练剑30 分钟前
hixl vs NCCL:昇腾生态通信库的独特优势分析
运维·c++·人工智能·cann
执风挽^31 分钟前
Python基础编程题2
开发语言·python·算法·visual studio code
梦帮科技31 分钟前
Node.js配置生成器CLI工具开发实战
前端·人工智能·windows·前端框架·node.js·json
程序员泠零澪回家种桔子33 分钟前
Spring AI框架全方位详解
java·人工智能·后端·spring·ai·架构
Echo_NGC223735 分钟前
【FFmpeg 使用指南】Part 3:码率控制策略与质量评估体系
人工智能·ffmpeg·视频·码率