【论文阅读】Membership Inference Attacks Against Machine Learning Models

基于confidence vector的MIA

  • [Machine Learning as a Service简单介绍](#Machine Learning as a Service简单介绍)
  • [什么是Membership Inference Attacks(MIA)](#什么是Membership Inference Attacks(MIA))
  • 攻击实现过程
    • Dataset
    • [Shadow training](#Shadow training)
    • [Train attack model](#Train attack model)

Machine Learning as a Service简单介绍

机器学习即服务(Machine Learning as a Service,MLaaS),即将机器学习算法部署到云平台上,用户可以上传自己的数据集,利用MLaaS上的算法等资源训练一个model,然后用这个模型预测。比如超市可以训练一个模型预测用户的购物喜好。 这里需要注意的是,大多数MLaaS平台,学习算法、训练过程、超参数的设定以及最终训练好的模型都不会对用户暴露,即MLaaS对用户是黑盒的,用户最终只能使用平台训练好的模型的预测输出。

什么是Membership Inference Attacks(MIA)

MIA攻击过程:判断一条数据是否用于训练指定的模型(target model),其涉及到用户信息的隐私信息。比如一个医疗机构利用用户数据训练一个模型,该模型用于判断哪些体检指标与患癌症相关,用于预测病人患癌症的概率。攻击者知道某一病人的数据,并利用MIA预测该用户数据用于训练了该模型,那么攻击者便能大胆猜测------该用户得了癌症,之后就可能向该用户推送一些医疗保险之类的。

MIA能够攻击成功的一个重要因素是,模型对于其训练数据集的预测分布与对其没有见过的数据集的预测分布是不同的,其中可能的原因是模型对其训练数据集过拟合了 (神经网络很多参数是冗余的,会记住训练数据集额外的一些信息)。

MIA可以根据攻击者所知道的额外的信息多少分为白盒(white-box)和黑盒(black-box):

  • 白盒:攻击者知道目标模型model structure、训练的细节、用到的learning algorithm等等;以及训练数据集或者其分布等等;
  • 黑盒:攻击者只能以black-box的形式访问目标模型,即query目标模型时,仅能得到目标模型的输出(prediction vector),模型的结构以及训练过程等信息一无所知;

攻击实现过程

Dataset

Shadow training

Train attack model

相关推荐
西格电力科技17 小时前
分布式光伏 “四可” 装置:“发电孤岛” 到 “电网友好” 的关键跨越
分布式·科技·机器学习·能源
kk哥889918 小时前
从数据分析到深度学习!Anaconda3 2025 全流程开发平台,安装步骤
人工智能
陈天伟教授19 小时前
基于学习的人工智能(3)机器学习基本框架
人工智能·学习·机器学习·知识图谱
搞科研的小刘选手20 小时前
【厦门大学主办】第六届计算机科学与管理科技国际学术会议(ICCSMT 2025)
人工智能·科技·计算机网络·计算机·云计算·学术会议
fanstuck20 小时前
深入解析 PyPTO Operator:以 DeepSeek‑V3.2‑Exp 模型为例的实战指南
人工智能·语言模型·aigc·gpu算力
萤丰信息20 小时前
智慧园区能源革命:从“耗电黑洞”到零碳样本的蜕变
java·大数据·人工智能·科技·安全·能源·智慧园区
世洋Blog20 小时前
更好的利用ChatGPT进行项目的开发
人工智能·unity·chatgpt
serve the people1 天前
机器学习(ML)和人工智能(AI)技术在WAF安防中的应用
人工智能·机器学习
0***K8921 天前
前端机器学习
人工智能·机器学习