【论文阅读】Membership Inference Attacks Against Machine Learning Models

基于confidence vector的MIA

  • [Machine Learning as a Service简单介绍](#Machine Learning as a Service简单介绍)
  • [什么是Membership Inference Attacks(MIA)](#什么是Membership Inference Attacks(MIA))
  • 攻击实现过程
    • Dataset
    • [Shadow training](#Shadow training)
    • [Train attack model](#Train attack model)

Machine Learning as a Service简单介绍

机器学习即服务(Machine Learning as a Service,MLaaS),即将机器学习算法部署到云平台上,用户可以上传自己的数据集,利用MLaaS上的算法等资源训练一个model,然后用这个模型预测。比如超市可以训练一个模型预测用户的购物喜好。 这里需要注意的是,大多数MLaaS平台,学习算法、训练过程、超参数的设定以及最终训练好的模型都不会对用户暴露,即MLaaS对用户是黑盒的,用户最终只能使用平台训练好的模型的预测输出。

什么是Membership Inference Attacks(MIA)

MIA攻击过程:判断一条数据是否用于训练指定的模型(target model),其涉及到用户信息的隐私信息。比如一个医疗机构利用用户数据训练一个模型,该模型用于判断哪些体检指标与患癌症相关,用于预测病人患癌症的概率。攻击者知道某一病人的数据,并利用MIA预测该用户数据用于训练了该模型,那么攻击者便能大胆猜测------该用户得了癌症,之后就可能向该用户推送一些医疗保险之类的。

MIA能够攻击成功的一个重要因素是,模型对于其训练数据集的预测分布与对其没有见过的数据集的预测分布是不同的,其中可能的原因是模型对其训练数据集过拟合了 (神经网络很多参数是冗余的,会记住训练数据集额外的一些信息)。

MIA可以根据攻击者所知道的额外的信息多少分为白盒(white-box)和黑盒(black-box):

  • 白盒:攻击者知道目标模型model structure、训练的细节、用到的learning algorithm等等;以及训练数据集或者其分布等等;
  • 黑盒:攻击者只能以black-box的形式访问目标模型,即query目标模型时,仅能得到目标模型的输出(prediction vector),模型的结构以及训练过程等信息一无所知;

攻击实现过程

Dataset

Shadow training

Train attack model

相关推荐
SEO_juper2 分钟前
精准控制爬虫抓取:Robots.txt 核心配置解析与常见避坑指南
人工智能·爬虫·seo·数字营销
友思特 智能感知8 分钟前
友思特案例 | 金属行业视觉检测案例一:彩涂钢板卷对卷检测
人工智能·计算机视觉·视觉检测·缺陷检测
Mixtral10 分钟前
2026年4款面试记录工具测评:从录音到结构化复盘
人工智能·面试·职场和发展·语音识别·语音转文字
得一录11 分钟前
Android AIDL 在智能体和IOT设备中的使用
android·人工智能·物联网·aigc
人工干智能12 分钟前
KFold时,两个关联“编号”的迭代器:`folds.split(...)` 和 `enumerate(...)`
人工智能·机器学习
l1t15 分钟前
利用豆包辅助编写数独隐式唯一数填充c程序
c语言·开发语言·人工智能·算法·豆包·deepseek
乐迪信息24 分钟前
乐迪信息:智能识别船舶种类的AI解决方案
大数据·网络·人工智能·算法·无人机
2501_9209538627 分钟前
目前有实力的6S咨询公司推荐
大数据·人工智能
Soonyang Zhang33 分钟前
xllm源码分析(四)——pd分离处理流程
人工智能·推理框架
传说故事36 分钟前
【论文自动阅读】How Much 3D Do Video Foundation Models Encode?
人工智能·深度学习·3d