【论文阅读】Membership Inference Attacks Against Machine Learning Models

基于confidence vector的MIA

  • [Machine Learning as a Service简单介绍](#Machine Learning as a Service简单介绍)
  • [什么是Membership Inference Attacks(MIA)](#什么是Membership Inference Attacks(MIA))
  • 攻击实现过程
    • Dataset
    • [Shadow training](#Shadow training)
    • [Train attack model](#Train attack model)

Machine Learning as a Service简单介绍

机器学习即服务(Machine Learning as a Service,MLaaS),即将机器学习算法部署到云平台上,用户可以上传自己的数据集,利用MLaaS上的算法等资源训练一个model,然后用这个模型预测。比如超市可以训练一个模型预测用户的购物喜好。 这里需要注意的是,大多数MLaaS平台,学习算法、训练过程、超参数的设定以及最终训练好的模型都不会对用户暴露,即MLaaS对用户是黑盒的,用户最终只能使用平台训练好的模型的预测输出。

什么是Membership Inference Attacks(MIA)

MIA攻击过程:判断一条数据是否用于训练指定的模型(target model),其涉及到用户信息的隐私信息。比如一个医疗机构利用用户数据训练一个模型,该模型用于判断哪些体检指标与患癌症相关,用于预测病人患癌症的概率。攻击者知道某一病人的数据,并利用MIA预测该用户数据用于训练了该模型,那么攻击者便能大胆猜测------该用户得了癌症,之后就可能向该用户推送一些医疗保险之类的。

MIA能够攻击成功的一个重要因素是,模型对于其训练数据集的预测分布与对其没有见过的数据集的预测分布是不同的,其中可能的原因是模型对其训练数据集过拟合了 (神经网络很多参数是冗余的,会记住训练数据集额外的一些信息)。

MIA可以根据攻击者所知道的额外的信息多少分为白盒(white-box)和黑盒(black-box):

  • 白盒:攻击者知道目标模型model structure、训练的细节、用到的learning algorithm等等;以及训练数据集或者其分布等等;
  • 黑盒:攻击者只能以black-box的形式访问目标模型,即query目标模型时,仅能得到目标模型的输出(prediction vector),模型的结构以及训练过程等信息一无所知;

攻击实现过程

Dataset

Shadow training

Train attack model

相关推荐
人工智能AI技术10 分钟前
能用C#开发AI吗?
人工智能·c#
whitelbwwww32 分钟前
车牌识别--obb识别车框
人工智能
果粒蹬i36 分钟前
AI系统故障诊断:模型崩溃、算力瓶颈与数据漂移的识别与解决策略
人工智能
CCPC不拿奖不改名42 分钟前
两种完整的 Git 分支协作流程
大数据·人工智能·git·python·elasticsearch·搜索引擎·自然语言处理
Coding茶水间44 分钟前
基于深度学习的交通标志检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习
亿信华辰软件1 小时前
构建智慧数据中台,赋能饮料集团全链路数字化转型新引擎
大数据·人工智能·云计算
大模型实验室Lab4AI1 小时前
西北工业大学 StereoMV2D 突破 3D 物体检测深度难题,精度与效率兼得
人工智能·计算机视觉·目标跟踪
旷野说1 小时前
打造 36Gbps 超高速本地机器学习开发环境
人工智能·机器学习
陈天伟教授2 小时前
人工智能应用-机器视觉:绘画大师 04.基于风格迁移的绘画大师
人工智能·神经网络·数码相机·生成对抗网络·dnn
爱打代码的小林2 小时前
opencv基础(轮廓检测、绘制与特征)
人工智能·opencv·计算机视觉