Python逐行检查表格中的数据并对指定行加以复制

本文介绍基于Python 语言,读取Excel 表格文件数据,并将其中符合我们特定要求那一行 加以复制指定的次数,而不符合要求那一行 则不复制;并将所得结果保存为新的Excel表格文件的方法。

这里需要说明,在我们之前的文章# Python复制Excel表格中指定数据若干次的方法中,也介绍过实现类似需求的另一种Python 代码,大家如果有需要可以查看上述文章;而上述文章中的代码,由于用到了DataFrame.append()这一个在最新版本pandas库中取消的方法,因此有的时候可能会出现报错的情况;且本文中的需求较之上述文章有进一步的提升,因此大家主要参考本文即可。

首先,我们来明确一下本文的具体需求。现有一个Excel 表格文件,在本文中我们就以.csv格式的文件为例;其中,如下图所示,这一文件中有一列(也就是inf_dif这一列)数据比较关键,我们希望对这一列数据加以处理------对于每一行 ,如果这一行的这一列数据的值 在指定的范围内,那么就将这一行复制指定的次数(复制的意思相当于就是,新生成一个和当前行 一摸一样数据的新行 );而对于符合我们要求的行 ,其具体要复制的次数 也不是固定的,也要根据这一行的这一列数据的值 来判断------比如如果这个数据在某一个值域内 ,那么这一行就复制10次;而如果在另一个值域内 ,这一行就复制50次等。

知道了需求,我们就可以开始代码的书写。其中,本文用到的具体代码如下所示。

python 复制代码
# -*- coding: utf-8 -*-
"""
Created on Thu Jul  6 22:04:48 2023

@author: fkxxgis
"""

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

original_file_path = "E:/01_Reflectivity/99_Model/02_Extract_Data/26_Train_Model_New/Train_Model_0715.csv"
result_file_path = "E:/01_Reflectivity/99_Model/02_Extract_Data/26_Train_Model_New/Train_Model_0715_Over_NIR_0717_2.csv"

df = pd.read_csv(original_file_path)
duplicated_num_0 = 70
duplicated_num_1 = 35
duplicated_num_2 = 7
duplicated_num_3 = 2

num = [duplicated_num_0 if (value <= -0.12 or value >= 0.12) else duplicated_num_1 if (value <= -0.1 or value >= 0.1) \
else duplicated_num_2 if (value <= -0.07 or value >= 0.07) else duplicated_num_3 if (value <= -0.03 or value >= 0.03) \
else 1 for value in df.inf_dif]
duplicated_df = df.loc[np.repeat(df.index.values, num)]

plt.figure(0)
plt.hist(df["inf_dif"], bins = 50)
plt.figure(1)
plt.hist(duplicated_df["inf_dif"], bins = 50)

duplicated_df.to_csv(result_file_path, index=False)

其中,上述代码的具体含义如下。

首先,我们需要导入所需的库,包括numpypandasmatplotlib.pyplot等,用于后续的数据处理和绘图操作。接下来,即可开始读取原始数据,我们使用pd.read_csv()函数读取文件,并将其存储在一个DataFrame 对象df中;这里的原始文件路径由original_file_path变量指定。

随后,我们开始设置重复次数。在这里,我们根据特定的条件,为每个值设定重复的次数。根据inf_dif列的值,将相应的重复次数存储在num列表中。根据不同的条件,使用条件表达式(if-else语句)分别设定了不同的重复次数。

接下来,我们使用loc函数和np.repeat()函数,将数据按照重复次数复制,并将结果存储在duplicated_df中。

最后,为了对比我们数据重复的效果,可以绘制直方图。在这里,我们使用matplotlib.pyplot库中的hist()函数绘制了两个直方图;其中,第一个直方图是原始数据集dfinf_dif列的直方图,第二个直方图是复制后的数据集duplicated_dfinf_dif列的直方图。通过指定bins参数,将数据分成50个区间。

完成上述操作后,我们即可保存数据。将复制后的数据集duplicated_df保存为.csv格式文件,路径由result_file_path变量指定。

执行上述代码,我们将获得如下所示的两个直方图;其中,第一个直方图是原始数据集dfinf_dif列的直方图,也就是还未进行数据复制的直方图。

其次,第二个直方图是复制后的数据集duplicated_dfinf_dif列的直方图。

可以看到,经过前述代码的处理,我们原始的数据分布情况已经有了很明显的改变。

至此,大功告成。

相关推荐
星辰离彬5 分钟前
Java 与 MySQL 性能优化:Java应用中MySQL慢SQL诊断与优化实战
java·后端·sql·mysql·性能优化
敲键盘的小夜猫13 分钟前
LLM复杂记忆存储-多会话隔离案例实战
人工智能·python·langchain
高压锅_122030 分钟前
Django Channels WebSocket实时通信实战:从聊天功能到消息推送
python·websocket·django
GetcharZp1 小时前
彻底告别数据焦虑!这款开源神器 RustDesk,让你自建一个比向日葵、ToDesk 更安全的远程桌面
后端·rust
胖达不服输2 小时前
「日拱一码」020 机器学习——数据处理
人工智能·python·机器学习·数据处理
吴佳浩2 小时前
Python入门指南-番外-LLM-Fingerprint(大语言模型指纹):从技术视角看AI开源生态的边界与挑战
python·llm·mcp
jack_yin2 小时前
Telegram DeepSeek Bot 管理平台 发布啦!
后端
UrbanJazzerati2 小时前
使用Excel制作多类别占比分析字母饼图
excel
小码编匠2 小时前
C# 上位机开发怎么学?给自动化工程师的建议
后端·c#·.net
库森学长2 小时前
面试官:发生OOM后,JVM还能运行吗?
jvm·后端·面试