webassembly003 whisper.cpp的python绑定实现+Cython+Setuptools的GUI程序

CODE

  • python端的绑定和本文一样,还需要将cdef char* LANGUAGE = b'en'改为中文zh(也可以在函数中配置一个参数修改这个值)。

  • ps:本来想尝试cdef whisper_context* whisper_init_from_file_with_params_no_state(char*, whisper_full_params)然后进行调用,但是发现最新版的whisper.h没有这个API了,所以先不加了。

    import pyaudio
    import wave
    import struct
    import sys
    import numpy as np

    import pyqtgraph as pg
    from PyQt5 import QtWidgets
    from PyQt5.QtCore import Qt

    from whispercpp import Whisper

    Audio Format (check Audio MIDI Setup if on Mac)

    FORMAT = pyaudio.paInt16
    RATE = 16000
    CHANNELS = 2

    Set Plot Range [-RANGE,RANGE], default is nyquist/2

    RANGE = None
    if not RANGE:
    RANGE = RATE/2

    Set these parameters (How much data to plot per FFT)

    INPUT_BLOCK_TIME = 0.05
    INPUT_FRAMES_PER_BLOCK = int(RATE*INPUT_BLOCK_TIME)

    Which Channel? (L or R)

    LR = "l"

    class SpectrumAnalyzer():
    def init(self):
    self.pa = pyaudio.PyAudio()
    self.initMicrophone()
    self.initUI()

      def find_input_device(self):
      	device_index = None            
      	for i in range(self.pa.get_device_count()):     
      		devinfo = self.pa.get_device_info_by_index(i)
      		if devinfo["name"].lower() in ["mic","input"]:
      			device_index = i
      	return device_index
    
      def initMicrophone(self):
      	device_index = self.find_input_device()
    
      	self.stream = self.pa.open(	format = FORMAT,
      								channels = CHANNELS,
      								rate = RATE,
      								input = True,
      								input_device_index = device_index,
      								frames_per_buffer = INPUT_FRAMES_PER_BLOCK)
    
      def readData(self):
      	block = self.stream.read(INPUT_FRAMES_PER_BLOCK)
      	count = len(block)/2
      	format = "%dh"%(count)
      	shorts = struct.unpack( format, block )
      	if CHANNELS == 1:
      		return np.array(shorts)
      	else:
      		l = shorts[::2]
      		r = shorts[1::2]
      		if LR == 'l':
      			return np.array(l)
      		else:
      			return np.array(r)
    
      def initUI(self):
      	self.app = QtWidgets.QApplication([]) # self.app = QtGui.QApplication([])
      	self.app.quitOnLastWindowClosed()
    
      	self.mainWindow = QtWidgets.QMainWindow()
      	self.mainWindow.setWindowFlags(Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint)
      	self.mainWindow.setWindowTitle("Spectrum Analyzer")
      	self.mainWindow.setGeometry(100, 100, 300, 200)#self.mainWindow.resize(800,300)
      	self.centralWid = QtWidgets.QWidget()
      	self.mainWindow.setCentralWidget(self.centralWid)
      	self.lay = QtWidgets.QVBoxLayout()
      	self.centralWid.setLayout(self.lay)
    
      	# Add a button
      	self.button_start = QtWidgets.QPushButton("Start Record Audio")
      	self.button_start.clicked.connect(self.Button_Start)
      	self.lay.addWidget(self.button_start)
      	self.button_end = QtWidgets.QPushButton("whisper Init")
      	self.whisper = None
      	self.is_whisper_inited = False
      	self.button_end.clicked.connect(self.Button_Whisper)
      	self.lay.addWidget(self.button_end)
      	self.button = QtWidgets.QPushButton("TRANS AUDIO")
      	self.button.clicked.connect(self.Button_TransAudio)
      	self.lay.addWidget(self.button)
      	# Add a text label
      	self.label = QtWidgets.QLabel("Text will appear here:")
      	self.lay.addWidget(self.label)
          # Add a QLineEdit
      	self.text_field = QtWidgets.QLineEdit()
      	self.text_field.setFixedSize(280, 200)
      	self.lay.addWidget(self.text_field)
    
      	self.specWid = pg.PlotWidget(name="spectrum")
      	self.specItem = self.specWid.getPlotItem()
      	self.specItem.setMouseEnabled(y=False)
      	self.specItem.setYRange(0,1000)
      	self.specItem.setXRange(-RANGE,RANGE, padding=0)
    
      	self.specAxis = self.specItem.getAxis("bottom")
      	self.specAxis.setLabel("Frequency [Hz]")
      	self.lay.addWidget(self.specWid)
    
      	self.mainWindow.show()
      	self.app.aboutToQuit.connect(self.close)
    
      def onButtonClick(self):
      	self.label.setText("Whisper res is:")
      	self.text_field.setText("Hello")
    
      def Button_Whisper(self):
      	self.whisper = Whisper('large',model_path= "/home/pdd/myassets/ggml-medium.bin")
      	self.is_whisper_inited = True
      	self.text_field.setText("Whisper INITED")
    
      def Button_TransAudio(self):
      	result = self.whisper.transcribe("/home/pdd/le/pywhisper/output.wav") # result = w.transcribe("myfile.mp3")
      	print(123)
      	text = self.whisper.extract_text(result)
      	self.text_field.setText(str(text))
    
      def Button_Start(self):
      	self.label.setText("Whisper res is:")
      	self.text_field.setText("Start ---")
      	# 录制音频
      	frames = []
      	sample_rate = 16000
      	duration = 5
      	for i in range(0, int(sample_rate / 1024 * duration)):
      		data = self.stream.read(1024)
      		frames.append(data)
     
      	# 将录制的音频保存为wav文件
      	with wave.open("output.wav", 'wb') as wf:
      		wf.setnchannels(CHANNELS) # 2
      		wf.setsampwidth(self.pa.get_sample_size(FORMAT)) # 2
      		wf.setframerate(sample_rate)
      		wf.writeframes(b''.join(frames))
      	self.text_field.setText("保存为wav文件")
      	
    
      def close(self):
      	self.stream.close()
      	sys.exit()
    
      def get_spectrum(self, data):
      	T = 1.0/RATE
      	N = data.shape[0]
      	Pxx = (1./N)*np.fft.fft(data)
      	f = np.fft.fftfreq(N,T)
      	Pxx = np.fft.fftshift(Pxx)
      	f = np.fft.fftshift(f)
    
      	return f.tolist(), (np.absolute(Pxx)).tolist()
    
      def mainLoop(self):
      	while 1:
      		# Sometimes Input overflowed because of mouse events, ignore this
      		try:
      			data = self.readData()
      		except IOError:
      			continue
      		f, Pxx = self.get_spectrum(data)
      		self.specItem.plot(x=f,y=Pxx, clear=True)
      		QtWidgets.QApplication.processEvents()
    

    if name == 'main':
    sa = SpectrumAnalyzer()
    sa.mainLoop()

相关推荐
宋发元16 分钟前
如何使用正则表达式验证域名
python·mysql·正则表达式
Dontla25 分钟前
Rust泛型系统类型推导原理(Rust类型推导、泛型类型推导、泛型推导)为什么在某些情况必须手动添加泛型特征约束?(泛型trait约束)
开发语言·算法·rust
XMYX-01 小时前
Python 操作 Elasticsearch 全指南:从连接到数据查询与处理
python·elasticsearch·jenkins
正义的彬彬侠1 小时前
sklearn.datasets中make_classification函数
人工智能·python·机器学习·分类·sklearn
belldeep1 小时前
python:用 sklearn 转换器处理数据
python·机器学习·sklearn
安静的_显眼包O_o1 小时前
from sklearn.preprocessing import Imputer.处理缺失数据的工具
人工智能·python·sklearn
安静的_显眼包O_o1 小时前
from sklearn.feature_selection import VarianceThreshold.移除低方差的特征来减少数据集中的特征数量
人工智能·python·sklearn
_可乐无糖1 小时前
pytest中的断言
python·pytest
Neophyte06081 小时前
C++算法练习-day40——617.合并二叉树
开发语言·c++·算法
慕容复之巅1 小时前
基于MATLAB的条形码的识别图像处理报告
开发语言·图像处理·matlab