sklearn.datasets中make_classification函数

make_classificationsklearn.datasets 模块中的一个函数,用于生成一个用于分类任务的虚拟数据集。它允许你生成具有指定特征、类别和噪声等属性的人工数据集,通常用于测试和演示机器学习算法。

语法

python 复制代码
from sklearn.datasets import make_classification

make_classification(n_samples=100, n_features=20, n_informative=2, n_redundant=2,
                     n_classes=2, n_clusters_per_class=2, weights=None, flip_y=0.01,
                     class_sep=1.0, hypercube=True, shift=0.0, scale=1.0, shuffle=True,
                     random_state=None)

参数说明

  • n_samples : 样本数量,默认值是 100。决定数据集中的样本数。
  • n_features : 特征数量,默认值是 20。生成的特征的总数。
  • n_informative : 有信息的特征数量,默认值是 2。这些特征对目标变量有实际影响。
  • n_redundant : 冗余特征的数量,默认值是 2。这些特征是从现有的有信息特征中线性组合而来,不提供额外的有用信息。
  • n_classes : 类别数,默认值是 2。目标变量的类别数量。
  • n_clusters_per_class : 每个类别中的簇数,默认值是 2。用于定义类别的分布。
  • weights : 每个类的样本权重,默认值是 None。可以用来设置每个类别的样本比例。
  • flip_y : 标签的随机噪声比例,默认值是 0.01。可以用来模拟标签中的噪声。
  • class_sep : 类别之间的分隔度,默认值是 1.0。较大的值意味着类别之间更容易分开,较小的值会导致类别重叠。
  • hypercube : 是否生成超立方体形状的特征空间,默认值是 True
  • shift : 对生成的特征进行平移,默认值是 0.0
  • scale : 对生成的特征进行缩放,默认值是 1.0
  • shuffle : 是否打乱样本顺序,默认值是 True
  • random_state: 随机数生成器的种子,用于控制结果的可重复性。

返回值

返回一个元组 (X, y),其中:

  • X 是生成的特征矩阵,形状为 (n_samples, n_features)
  • y 是目标变量的标签数组,形状为 (n_samples,)

示例

1. 基本示例

生成一个包含 100 个样本、2 个特征、2 个类别的简单分类数据集:

python 复制代码
from sklearn.datasets import make_classification

X, y = make_classification(n_samples=100, n_features=2, n_classes=2, random_state=42)

print(X.shape)  # 输出 (100, 2)
print(y.shape)  # 输出 (100,)
2. 更多控制

生成 1000 个样本,20 个特征,其中 5 个是有信息的,3 个是冗余的,类别之间有噪声:

python 复制代码
X, y = make_classification(n_samples=1000, n_features=20, n_informative=5, 
                            n_redundant=3, n_classes=3, flip_y=0.05, random_state=42)

print(X.shape)  # 输出 (1000, 20)
print(y.shape)  # 输出 (1000,)
3. 自定义类别分布

自定义类别的样本分布(例如,使类别 0 和类别 1 更为不平衡):

python 复制代码
X, y = make_classification(n_samples=1000, n_features=10, n_classes=2, 
                            weights=[0.9, 0.1], random_state=42)

print(y[:20])  # 输出样本标签,类别不平衡

应用场景

  • 测试和验证模型:生成用于分类任务的模拟数据,帮助评估不同分类算法的效果。
  • 教学和演示:用于机器学习教程和课堂教学,展示如何处理不同的分类问题。
  • 算法调试 :当你需要一个已知的、有控制特征的数据集来调试或调整机器学习模型时,make_classification 是一个很好的工具。

通过 make_classification,可以快速生成多样的人工数据集,以适应不同的机器学习实验。

相关推荐
B站_计算机毕业设计之家4 分钟前
机器学习实战项目:Python+Flask 汽车销量分析可视化系统(requests爬车主之家+可视化 源码+文档)✅
人工智能·python·机器学习·数据分析·flask·汽车·可视化
CV-杨帆24 分钟前
论文阅读:arxiv 2025 Scaling Laws for Differentially Private Language Models
论文阅读·人工智能·语言模型
羊羊小栈27 分钟前
基于「多模态大模型 + BGE向量检索增强RAG」的航空维修智能问答系统(vue+flask+AI算法)
vue.js·人工智能·python·语言模型·flask·毕业设计
viperrrrrrrrrr728 分钟前
GPT系列模型-详解
人工智能·gpt·llm
星期天要睡觉31 分钟前
模型部署——Flask 部署 PyTorch 模型
pytorch·python·flask
weixin_4569042737 分钟前
SHAP可视化代码详细讲解
python
DTS小夏38 分钟前
算法社Python基础入门面试题库(新手版·含答案)
python·算法·面试
刘一哥GIS1 小时前
Windows环境搭建:PostGreSQL+PostGIS安装教程
数据库·python·arcgis·postgresql·postgis
算家计算1 小时前
Wan2.2-Animate-14B 使用指南:从图片到动画的完整教程
人工智能·开源·aigc
西柚小萌新1 小时前
【深入浅出PyTorch】--4.PyTorch基础实战
人工智能·pytorch·python