机器学习|ROC曲线和AUC值

概念AUC(Area Under Curve)被定义为ROC曲线下的面积。其中,ROC曲线全称为受试者工作特征曲线 (receiver operating characteristic curve),
模型会计算出所判断事物为汉堡🍔的概率,而这个时候还需要再设置一个阈值,使得计算出来的概率如果大于这个阈值,就会被判作是汉堡,而如果小于这个阈值的话,就会被判作不是汉堡。

也就是说,有存在两种错误情况,一种是判断为🍔,但实际并不是🍔,另外一种是判断为不是🍔,但实际是汉堡。

同时不同的阈值会对应不同的图像,而可能对应不同的错误情况的情况个数。

真正例率(True Positive Rate,简称TPR)(实际为真的个体占判断为真的个体的比值)

TPR的话,值越大越好,能判出来更多正确的真。

假正例率(False Positive Rate,简称FPR),FPR的话,越小越好,被错判为是的情况越少。

因而点越靠上和靠左越好

从而可以得到ROC曲线。(receiver operating characteristic curve,简称ROC曲线)

而一条ROC曲线是可以用来刻画一个分类器在不同阈值下的变化。

也就是说,一条ROC曲线可以对应一个分类器或者分类器的性能。

比较分类器的某些性能也可以用对应的ROC曲线进行比较。

相关推荐
一切皆有可能!!5 小时前
实践篇:利用ragas在自己RAG上实现LLM评估②
人工智能·语言模型
月白风清江有声6 小时前
爆炸仿真的学习日志
人工智能
华奥系科技7 小时前
智慧水务发展迅猛:从物联网架构到AIoT系统的跨越式升级
人工智能·物联网·智慧城市
R²AIN SUITE7 小时前
MCP协议重构AI Agent生态:万能插槽如何终结工具孤岛?
人工智能
b***25118 小时前
动力电池点焊机:驱动电池焊接高效与可靠的核心力量|比斯特自动化
人工智能·科技·自动化
Gyoku Mint8 小时前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
小和尚同志8 小时前
通俗易懂的 MCP 概念入门
人工智能·aigc
dudly8 小时前
大语言模型评测体系全解析(下篇):工具链、学术前沿与实战策略
人工智能·语言模型
zzlyx998 小时前
AI大数据模型如何与thingsboard物联网结合
人工智能·物联网