机器学习|ROC曲线和AUC值

概念AUC(Area Under Curve)被定义为ROC曲线下的面积。其中,ROC曲线全称为受试者工作特征曲线 (receiver operating characteristic curve),
模型会计算出所判断事物为汉堡🍔的概率,而这个时候还需要再设置一个阈值,使得计算出来的概率如果大于这个阈值,就会被判作是汉堡,而如果小于这个阈值的话,就会被判作不是汉堡。

也就是说,有存在两种错误情况,一种是判断为🍔,但实际并不是🍔,另外一种是判断为不是🍔,但实际是汉堡。

同时不同的阈值会对应不同的图像,而可能对应不同的错误情况的情况个数。

真正例率(True Positive Rate,简称TPR)(实际为真的个体占判断为真的个体的比值)

TPR的话,值越大越好,能判出来更多正确的真。

假正例率(False Positive Rate,简称FPR),FPR的话,越小越好,被错判为是的情况越少。

因而点越靠上和靠左越好

从而可以得到ROC曲线。(receiver operating characteristic curve,简称ROC曲线)

而一条ROC曲线是可以用来刻画一个分类器在不同阈值下的变化。

也就是说,一条ROC曲线可以对应一个分类器或者分类器的性能。

比较分类器的某些性能也可以用对应的ROC曲线进行比较。

相关推荐
comli_cn2 小时前
残差链接(Residual Connection)
人工智能·算法
摸鱼仙人~2 小时前
在政务公文场景中落地 RAG + Agent:技术难点与系统化解决方案
人工智能·政务
Aaron15882 小时前
基于VU13P在人工智能高速接口传输上的应用浅析
人工智能·算法·fpga开发·硬件架构·信息与通信·信号处理·基带工程
予枫的编程笔记2 小时前
【论文解读】DLF:以语言为核心的多模态情感分析新范式 (AAAI 2025)
人工智能·python·算法·机器学习
HyperAI超神经2 小时前
完整回放|上海创智/TileAI/华为/先进编译实验室/AI9Stars深度拆解 AI 编译器技术实践
人工智能·深度学习·机器学习·开源
大模型真好玩2 小时前
LangGraph智能体开发设计模式(四)——LangGraph多智能体设计模式:网络架构
人工智能·langchain·agent
北辰alk2 小时前
RAG嵌入模型选择全攻略:从理论到代码实战
人工智能
Smoothzjc2 小时前
👉 求你了,别再裸写 fetch 做 AI 流式响应了!90% 的人都在踩这个坑
前端·人工智能·后端
沛沛老爹2 小时前
Web开发者进阶AI:Agent技能设计模式之迭代分析与上下文聚合实战
前端·人工智能·设计模式
创作者mateo2 小时前
PyTorch 入门笔记配套【完整练习代码】
人工智能·pytorch·笔记