机器学习|ROC曲线和AUC值

概念AUC(Area Under Curve)被定义为ROC曲线下的面积。其中,ROC曲线全称为受试者工作特征曲线 (receiver operating characteristic curve),
模型会计算出所判断事物为汉堡🍔的概率,而这个时候还需要再设置一个阈值,使得计算出来的概率如果大于这个阈值,就会被判作是汉堡,而如果小于这个阈值的话,就会被判作不是汉堡。

也就是说,有存在两种错误情况,一种是判断为🍔,但实际并不是🍔,另外一种是判断为不是🍔,但实际是汉堡。

同时不同的阈值会对应不同的图像,而可能对应不同的错误情况的情况个数。

真正例率(True Positive Rate,简称TPR)(实际为真的个体占判断为真的个体的比值)

TPR的话,值越大越好,能判出来更多正确的真。

假正例率(False Positive Rate,简称FPR),FPR的话,越小越好,被错判为是的情况越少。

因而点越靠上和靠左越好

从而可以得到ROC曲线。(receiver operating characteristic curve,简称ROC曲线)

而一条ROC曲线是可以用来刻画一个分类器在不同阈值下的变化。

也就是说,一条ROC曲线可以对应一个分类器或者分类器的性能。

比较分类器的某些性能也可以用对应的ROC曲线进行比较。

相关推荐
●VON1 分钟前
CANN安全与隐私:从模型加固到数据合规的全栈防护实战
人工智能·安全
刘大大Leo7 分钟前
GPT-5.3-Codex 炸了:第一个「自己造自己」的 AI 编程模型,到底意味着什么?
人工智能·gpt
小镇敲码人10 分钟前
剖析CANN框架中Samples仓库:从示例到实战的AI开发指南
c++·人工智能·python·华为·acl·cann
摘星编程18 分钟前
CANN ops-nn Pooling算子解读:CNN模型下采样与特征提取的核心
人工智能·神经网络·cnn
程序员清洒32 分钟前
CANN模型安全:从对抗防御到隐私保护的全栈安全实战
人工智能·深度学习·安全
island131436 分钟前
CANN ops-nn 算子库深度解析:神经网络计算引擎的底层架构、硬件映射与融合优化机制
人工智能·神经网络·架构
小白|39 分钟前
CANN与实时音视频AI:构建低延迟智能通信系统的全栈实践
人工智能·实时音视频
Kiyra40 分钟前
作为后端开发你不得不知的 AI 知识——Prompt(提示词)
人工智能·prompt
艾莉丝努力练剑43 分钟前
实时视频流处理:利用ops-cv构建高性能CV应用
人工智能·cann
程序猿追43 分钟前
深度解析CANN ops-nn仓库 神经网络算子的性能优化与实践
人工智能·神经网络·性能优化