机器学习——泰坦尼克号乘客生存预测

前言

本文章是我在完成机器学习课程设计写的总结,共计花费五天左右,在kaggle平台上测试,最高的一次准确率为0.78708。

在使用机器学习相关知识去处理某个实际的问题的时候首先就是从需求理解和问题预处理开始,通过异常数据收集、数据整合、数据分析探索,到模型训练和调优,最后进行模型验证评估。

需求理解和问题预处理是整个流程的基础,在本次课程设计中,目标是判断乘客的生还率,怎样基于已有的特征来预测是否生还。

然后就是数据收集,这里我们用了kaggle平台上的数据集。但是这个数据集是不完整的这就需要我们对数据进行预处理和数据清洗。

需要数据进行清洗、整合和探索性分析,寻找数据的规律和特征,为模型的训练提供支持。在这里数据中存在缺失值,缺失值的填充方法有很多:

①如果缺值的样本占总数比例极高,我们可能就直接舍弃了,作为特征加入的话,可能反倒带入noise,影响最后的结果了

②如果缺值的样本适中,而该属性非连续值特征属性(比如说类目属性),那就把NaN作为一个新类别,加到类别特征中

③如果缺值的样本适中,而该属性为连续值特征属性,有时候我们会考虑给定一个step(比如这里的age,我们可以考虑每隔2/3岁为一个步长),然后把它离散化,之后把NaN作为一个type加到属性类目中。

④有些情况下,缺失的值个数并不是特别多,那我们也可以试着根据已有的值,拟合一下数据,补充上。

同时需要将数据进行因子化,这里我还将差值特别大的特征进行归一化,防止因为差值过大导致欠拟合。

接着就是模型构建,这里我选择了逻辑回归、KNN、SVM三种核函数、深度学习等算法,并进行了模型之间的对比,同时还使用了K折交叉验证,利用bagging算法进行模型融合,防止过拟合,输出预测错误的样本来进行模型调节等等。

一、数据集收集

数据集我是直接用kaggle上的数据集,大家可以自行获取。

链接:数据集https://pan.baidu.com/s/1GjQwk9r6MXigFc8Op0xYdw?pwd=peng

提取码:peng

相关推荐
消失的旧时光-19433 分钟前
Linux 编辑器入门:nano 与 vim 的区别与选择指南
linux·运维·服务器
Elastic 中国社区官方博客6 分钟前
Elasticsearch:Workflows 介绍 - 9.3
大数据·数据库·人工智能·elasticsearch·ai·全文检索
仍然.10 分钟前
MYSQL--- 聚合查询,分组查询和联合查询
数据库
晓131313 分钟前
第七章 【C语言篇:文件】 文件全面解析
linux·c语言·开发语言
一 乐14 分钟前
校园二手交易|基于springboot + vue校园二手交易系统(源码+数据库+文档)
java·数据库·vue.js·spring boot·后端
啦啦啦_999916 分钟前
Redis-0-业务逻辑
数据库·redis·缓存
唐装鼠22 分钟前
Linux 下 malloc 内存分配机制详解
linux·malloc
予枫的编程笔记22 分钟前
【Linux入门篇】Linux运维必学:Vim核心操作详解,告别编辑器依赖
linux·人工智能·linux运维·vim操作教程·程序员工具·编辑器技巧·新手学vim
hedley(●'◡'●)27 分钟前
基于cesium和vue的大疆司空模仿程序
前端·javascript·vue.js·python·typescript·无人机
qq5_81151751529 分钟前
web城乡居民基本医疗信息管理系统信息管理系统源码-SpringBoot后端+Vue前端+MySQL【可直接运行】
前端·vue.js·spring boot