概率论中的全概率公式、贝叶斯公式解析

全概率公式

定义

全概率公式是用来计算一个事件的概率,这个事件可以通过几个互斥事件的并集来表示。这几个互斥事件称为"完备事件系"。实质是由原因推结果

公式
用途

全概率公式通常用于计算一个事件的总概率,特别是当这个事件与几个不同的因素相关时。它可以让我们将复杂事件的概率分解为更简单事件概率的组合。

贝叶斯公式

定义

贝叶斯公式是条件概率的一个应用,它描述了两个事件的关系,其中一个事件发生后,对另一个事件概率的影响。实质是由结果推原因

公式
用途

贝叶斯公式被广泛用于统计推断,它允许我们根据已有的知识和新的证据来更新概率。在机器学习中,贝叶斯公式可以用于基于先验知识和观测数据来预测类别概率。

区别

  • 应用场景:全概率是用来解决将一个事件的概率表示为几个互斥事件概率的和的问题;而贝叶斯公式是用来在给定一个事件发生后,更新我们对另一个事件概率的认知。
  • 侧重点:全概率侧重于计算总概率,贝叶斯侧重于基于已知信息对概率进行更新。
  • 条件与结果:全概率公式没有明确区分条件与结果,只是在完备事件系下对某事件的概率进行分解;贝叶斯公式明确区分了条件(证据)和结果(更新后的概率)。
相关推荐
jimmyleeee1 天前
人工智能基础知识笔记七:随机变量的几种分布
人工智能·笔记·概率论
明月看潮生2 天前
青少年编程与数学 02-015 大学数学知识点 03课题、概率论和数理统计
青少年编程·概率论·数理统计·编程与数学·大学数学
jackyrongvip6 天前
妙用《甄嬛传》中的选妃来记忆概率论中的乘法公式
概率论
lynn-669 天前
【深度学习与大模型基础】第8章-概率分布
人工智能·算法·机器学习·概率论
猎人everest11 天前
机器学习之概率论
人工智能·机器学习·概率论
豆芽81911 天前
二项式分布(Binomial Distribution)
人工智能·python·机器学习·numpy·概率论
zbdx不知名菜鸡14 天前
self Attention为何除以根号dk?(全新角度)
transformer·attention·概率论
优美的赫蒂14 天前
扩展卡尔曼滤波
机器学习·数学建模·矩阵·概率论
Lichenpar15 天前
AI小白的第七天:必要的数学知识(四)
人工智能·概率论·概率分布
pen-ai16 天前
离散概率分布:正态分布,二项分布,连续分布,正态分布的性质
算法·机器学习·概率论