概率论中的全概率公式、贝叶斯公式解析

全概率公式

定义

全概率公式是用来计算一个事件的概率,这个事件可以通过几个互斥事件的并集来表示。这几个互斥事件称为"完备事件系"。实质是由原因推结果

公式
用途

全概率公式通常用于计算一个事件的总概率,特别是当这个事件与几个不同的因素相关时。它可以让我们将复杂事件的概率分解为更简单事件概率的组合。

贝叶斯公式

定义

贝叶斯公式是条件概率的一个应用,它描述了两个事件的关系,其中一个事件发生后,对另一个事件概率的影响。实质是由结果推原因

公式
用途

贝叶斯公式被广泛用于统计推断,它允许我们根据已有的知识和新的证据来更新概率。在机器学习中,贝叶斯公式可以用于基于先验知识和观测数据来预测类别概率。

区别

  • 应用场景:全概率是用来解决将一个事件的概率表示为几个互斥事件概率的和的问题;而贝叶斯公式是用来在给定一个事件发生后,更新我们对另一个事件概率的认知。
  • 侧重点:全概率侧重于计算总概率,贝叶斯侧重于基于已知信息对概率进行更新。
  • 条件与结果:全概率公式没有明确区分条件与结果,只是在完备事件系下对某事件的概率进行分解;贝叶斯公式明确区分了条件(证据)和结果(更新后的概率)。
相关推荐
seeInfinite21 小时前
面试常见数学概率题
概率论
木非哲2 天前
AB实验必修课(一):线性回归的深度重构与稳定性评估
线性回归·概率论·abtest
大江东去浪淘尽千古风流人物4 天前
【LingBot-Depth】Masked Depth Modeling for Spatial Perception
人工智能·算法·机器学习·概率论
闪闪发亮的小星星5 天前
主旋参数定义
算法·机器学习·概率论
辰尘_星启8 天前
[最优控制]MPC模型预测控制
线性代数·机器学习·机器人·概率论·控制·现代控制
passxgx8 天前
12.1 均值、方差与概率
算法·均值算法·概率论
Cathy Bryant8 天前
softmax函数与logits
笔记·神经网络·机器学习·概率论·信息与通信
墨上烟雨8 天前
古典概型与几何概型
概率论
点云SLAM9 天前
似然函数(Likelihood Function)和最大似然估计
算法·机器学习·概率论·数理统计·最大似然估计·似然函数·概率分布
Figo_Cheung9 天前
Figo几何基础论:基于集合几何化的统一理论框架与哲学意涵——首次提出“几何化诱导的全息原理”
算法·机器学习·概率论·迭代加深