网络流数据集处理(深度学习数据处理基础)

一、数据集处理

处理数据集是一个文件夹 一个文件夹处理的,将原网络流数据集 放入一个文件夹 处理转换成 Json文件。(数据预处理)然后将这些文件处理成目标文件格式 再分割成训练集和测试集。每次运行只会处理一个文件夹。

  • 运行train.py 导入训练集训练模型,训练完之后进行保存模型参数。
  • 运行test.py 导入测试集测试模型,因此我们需要使用模型参数保存代码。

如果我们需要将数据集4倍交叉验证分为4个部分,3个训练集,一个测试集。那就相当于运行三次train.py分别运行导入不同的三个训练集即可。如果每个部分都需要当做一次测试集,那就重复4次就行。

二、后门攻击训练

为了进行有监督训练,我们需要带有标签的数据集。

我们认为数据集是带有标签的,

训练这里分为几个步骤:

将训练集每64个网络流当做一个批次。

(1)选择一个投毒目标yt,在当前训练集批次中随机选择20%个投毒目标,进行以下处理:

  • 上一次网络流+当前网络流生成 触发器掩码m
  • 当前网络流 与 掩码的m[n+1,2n]相加,训练模型分类为目标类别yt

(2)对于不投毒的训练集,用正常标签训练。

相关推荐
kebijuelun3 分钟前
ERNIE 5.0:统一自回归多模态与弹性训练
人工智能·算法·语言模型·transformer
Network_Engineer5 分钟前
从零手写LSTM:从门控原理到PyTorch源码级实现
人工智能·pytorch·lstm
芝士爱知识a8 分钟前
AlphaGBM 深度解析:下一代基于 AI 与蒙特卡洛的智能期权分析平台
数据结构·人工智能·python·股票·alphagbm·ai 驱动的智能期权分析·期权
weixin_6689 分钟前
GitHub 2026年AI项目热度分析报告-AI分析-分享
人工智能·github
vlln10 分钟前
【论文速读】达尔文哥德尔机 (Darwin Gödel Machine): 自进化智能体的开放式演化
人工智能·深度学习·ai agent
Katecat9966314 分钟前
目标检测咖啡果实成熟度检测:RetinaNet-X101模型实现
人工智能·目标检测·目标跟踪
AAD5558889916 分钟前
基于Mask_RCNN的猫科动物目标检测识别模型实现与分析
人工智能·目标检测·计算机视觉
Katecat9966320 分钟前
基于YOLOv8和MAFPN的骆驼目标检测系统实现
人工智能·yolo·目标检测
合力亿捷-小亿23 分钟前
2026年AI语音机器人测评推荐:复杂噪声环境下语义识别准确率对比分析
人工智能·机器人
子夜江寒23 分钟前
基于 LSTM 的中文情感分类项目解析
人工智能·分类·lstm