网络流数据集处理(深度学习数据处理基础)

一、数据集处理

处理数据集是一个文件夹 一个文件夹处理的,将原网络流数据集 放入一个文件夹 处理转换成 Json文件。(数据预处理)然后将这些文件处理成目标文件格式 再分割成训练集和测试集。每次运行只会处理一个文件夹。

  • 运行train.py 导入训练集训练模型,训练完之后进行保存模型参数。
  • 运行test.py 导入测试集测试模型,因此我们需要使用模型参数保存代码。

如果我们需要将数据集4倍交叉验证分为4个部分,3个训练集,一个测试集。那就相当于运行三次train.py分别运行导入不同的三个训练集即可。如果每个部分都需要当做一次测试集,那就重复4次就行。

二、后门攻击训练

为了进行有监督训练,我们需要带有标签的数据集。

我们认为数据集是带有标签的,

训练这里分为几个步骤:

将训练集每64个网络流当做一个批次。

(1)选择一个投毒目标yt,在当前训练集批次中随机选择20%个投毒目标,进行以下处理:

  • 上一次网络流+当前网络流生成 触发器掩码m
  • 当前网络流 与 掩码的m[n+1,2n]相加,训练模型分类为目标类别yt

(2)对于不投毒的训练集,用正常标签训练。

相关推荐
锋行天下3 小时前
公司内网部署大模型的探索之路
前端·人工智能·后端
背心2块钱包邮5 小时前
第7节——积分技巧(Integration Techniques)-代换积分法
人工智能·python·深度学习·matplotlib
无心水5 小时前
【分布式利器:大厂技术】4、字节跳动高性能架构:Kitex+Hertz+BytePS,实时流与AI的极致优化
人工智能·分布式·架构·kitex·分布式利器·字节跳动分布式·byteps
阿正的梦工坊5 小时前
DreamGym:通过经验合成实现代理学习的可扩展化
人工智能·算法·大模型·llm
PixelMind5 小时前
【超分辨率专题】FlashVSR:单步Diffusion的再次提速,实时视频超分不是梦!
深度学习·音视频·超分辨率·vsr
湘-枫叶情缘5 小时前
人脑生物芯片作为“数字修炼世界”终极载体的技术前景、伦理挑战与实现路径
人工智能
噜~噜~噜~5 小时前
偏导数和全导数的个人理解
深度学习·偏导数·梯度·全导数
Aaron15886 小时前
侦察、测向、识别、干扰一体化平台系统技术实现
人工智能·fpga开发·硬件架构·边缘计算·信息与通信·射频工程·基带工程
维维180-3121-14556 小时前
作物模型的未来:DSSAT与机器学习、遥感及多尺度模拟的融合
人工智能·生态学·农业遥感·作物模型·地理学·农学
lx7416026986 小时前
change-detection关于llm方向的任务与优化
深度学习