网络流数据集处理(深度学习数据处理基础)

一、数据集处理

处理数据集是一个文件夹 一个文件夹处理的,将原网络流数据集 放入一个文件夹 处理转换成 Json文件。(数据预处理)然后将这些文件处理成目标文件格式 再分割成训练集和测试集。每次运行只会处理一个文件夹。

  • 运行train.py 导入训练集训练模型,训练完之后进行保存模型参数。
  • 运行test.py 导入测试集测试模型,因此我们需要使用模型参数保存代码。

如果我们需要将数据集4倍交叉验证分为4个部分,3个训练集,一个测试集。那就相当于运行三次train.py分别运行导入不同的三个训练集即可。如果每个部分都需要当做一次测试集,那就重复4次就行。

二、后门攻击训练

为了进行有监督训练,我们需要带有标签的数据集。

我们认为数据集是带有标签的,

训练这里分为几个步骤:

将训练集每64个网络流当做一个批次。

(1)选择一个投毒目标yt,在当前训练集批次中随机选择20%个投毒目标,进行以下处理:

  • 上一次网络流+当前网络流生成 触发器掩码m
  • 当前网络流 与 掩码的m[n+1,2n]相加,训练模型分类为目标类别yt

(2)对于不投毒的训练集,用正常标签训练。

相关推荐
Aevget7 分钟前
界面组件Kendo UI for React 2025 Q3亮点 - AI功能全面提升
人工智能·react.js·ui·界面控件·kendo ui·ui开发
桜吹雪37 分钟前
LangChain.js/DeepAgents可观测性
javascript·人工智能
&&Citrus38 分钟前
【杂谈】SNNU公共计算平台:深度学习服务器配置与远程开发指北
服务器·人工智能·vscode·深度学习·snnu
乌恩大侠39 分钟前
Spark 机器上修改缓冲区大小
人工智能·usrp
STLearner41 分钟前
AI论文速读 | U-Cast:学习高维时间序列预测的层次结构
大数据·论文阅读·人工智能·深度学习·学习·机器学习·数据挖掘
数字化顾问43 分钟前
(65页PPT)大型集团物料主数据管理系统建设规划方案(附下载方式)
大数据·运维·人工智能
新知图书2 小时前
FastGPT版本体系概览
人工智能·ai agent·智能体·大模型应用开发·大模型应用
老蒋新思维2 小时前
创客匠人 2025 全球创始人 IP+AI 万人高峰论坛:AI 赋能下知识变现与 IP 变现的实践沉淀与行业启示
大数据·人工智能·网络协议·tcp/ip·重构·创始人ip·创客匠人
黑客思维者2 小时前
LLM底层原理学习笔记:Adam优化器为何能征服巨型模型成为深度学习的“速度与稳定之王”
笔记·深度学习·学习·llm·adam优化器