网络流数据集处理(深度学习数据处理基础)

一、数据集处理

处理数据集是一个文件夹 一个文件夹处理的,将原网络流数据集 放入一个文件夹 处理转换成 Json文件。(数据预处理)然后将这些文件处理成目标文件格式 再分割成训练集和测试集。每次运行只会处理一个文件夹。

  • 运行train.py 导入训练集训练模型,训练完之后进行保存模型参数。
  • 运行test.py 导入测试集测试模型,因此我们需要使用模型参数保存代码。

如果我们需要将数据集4倍交叉验证分为4个部分,3个训练集,一个测试集。那就相当于运行三次train.py分别运行导入不同的三个训练集即可。如果每个部分都需要当做一次测试集,那就重复4次就行。

二、后门攻击训练

为了进行有监督训练,我们需要带有标签的数据集。

我们认为数据集是带有标签的,

训练这里分为几个步骤:

将训练集每64个网络流当做一个批次。

(1)选择一个投毒目标yt,在当前训练集批次中随机选择20%个投毒目标,进行以下处理:

  • 上一次网络流+当前网络流生成 触发器掩码m
  • 当前网络流 与 掩码的m[n+1,2n]相加,训练模型分类为目标类别yt

(2)对于不投毒的训练集,用正常标签训练。

相关推荐
杭州泽沃电子科技有限公司12 小时前
在线监测:为医药精细化工奠定安全、合规与质量基石
运维·人工智能·物联网·安全·智能监测
GIS数据转换器12 小时前
GIS+大模型助力安全风险精细化管理
大数据·网络·人工智能·安全·无人机
OJAC11112 小时前
AI跨界潮:金融精英与应届生正涌入人工智能领域
人工智能·金融
机器之心12 小时前
Adam的稳+Muon的快?华为诺亚开源ROOT破解大模型训练「既要又要」的两难困境
人工智能·openai
可观测性用观测云13 小时前
观测云 MCP Server 接入和使用最佳实践
人工智能
掘金一周13 小时前
大部分人都错了!这才是chrome插件多脚本通信的正确姿势 | 掘金一周 11.27
前端·人工智能·后端
xier_ran13 小时前
深度学习:生成对抗网络(GAN)详解
人工智能·深度学习·机器学习·gan
ModestCoder_13 小时前
ROS Bag与导航数据集技术指南
开发语言·人工智能·自然语言处理·机器人·具身智能
海边夕阳200614 小时前
【每天一个AI小知识】:什么是循环神经网络?
人工智能·经验分享·rnn·深度学习·神经网络·机器学习
2501_9181269114 小时前
如何用ai做开发
人工智能