网络流数据集处理(深度学习数据处理基础)

一、数据集处理

处理数据集是一个文件夹 一个文件夹处理的,将原网络流数据集 放入一个文件夹 处理转换成 Json文件。(数据预处理)然后将这些文件处理成目标文件格式 再分割成训练集和测试集。每次运行只会处理一个文件夹。

  • 运行train.py 导入训练集训练模型,训练完之后进行保存模型参数。
  • 运行test.py 导入测试集测试模型,因此我们需要使用模型参数保存代码。

如果我们需要将数据集4倍交叉验证分为4个部分,3个训练集,一个测试集。那就相当于运行三次train.py分别运行导入不同的三个训练集即可。如果每个部分都需要当做一次测试集,那就重复4次就行。

二、后门攻击训练

为了进行有监督训练,我们需要带有标签的数据集。

我们认为数据集是带有标签的,

训练这里分为几个步骤:

将训练集每64个网络流当做一个批次。

(1)选择一个投毒目标yt,在当前训练集批次中随机选择20%个投毒目标,进行以下处理:

  • 上一次网络流+当前网络流生成 触发器掩码m
  • 当前网络流 与 掩码的m[n+1,2n]相加,训练模型分类为目标类别yt

(2)对于不投毒的训练集,用正常标签训练。

相关推荐
软件算法开发1 分钟前
基于山羚羊优化的LSTM深度学习网络模型(MGO-LSTM)的一维时间序列预测算法matlab仿真
深度学习·matlab·lstm·一维时间序列预测·山羚羊优化·mgo-lstm
LaughingZhu4 分钟前
Product Hunt 每日热榜 | 2025-12-26
人工智能·经验分享·深度学习·神经网络·产品运营
小徐Chao努力6 分钟前
【Langchain4j-Java AI开发】08-向量嵌入与向量数据库
java·数据库·人工智能
Coder_Boy_6 分钟前
基于SpringAI的智能平台基座开发-(三)
人工智能·springboot·aiops·langchain4j
小徐Chao努力16 分钟前
【Langchain4j-Java AI开发】07-RAG 检索增强生成
java·人工智能·python
360智汇云23 分钟前
存储压缩:不是“挤水分”,而是让数据“轻装上阵
大数据·人工智能
小熊熊知识库38 分钟前
AI架构详解以及免费AI如何薅
人工智能·python·ai使用
咚咚王者1 小时前
人工智能之数学基础 信息论:第二章 核心度量
人工智能
Trent19851 小时前
影楼精修-眼镜祛反光算法详解
图像处理·人工智能·算法·计算机视觉·aigc
吾在学习路1 小时前
【CVPR 2018最佳论文】Squeeze-and-Excitation Networks
人工智能·深度学习·神经网络·机器学习