flink分别使用FilterMap和ProcessFunction实现去重逻辑

背景

在日常的工作中,对数据去重是一件很常见的操作,比如我们只需要保留重复记录的第一条,而忽略掉后续重复的记录,达到去重的效果,本文就使用flink的FilterMap和ProcessFunction来实现去重逻辑

FilterMap和ProcessFunction去重实现

filterMap实现去重

java 复制代码
public class DuplicateRichFlatMap extends RichFlatMapFunction<WikipediaEditEvent, WikipediaEditEvent> {

    ValueState<Boolean> duplicateInput;

    @Override
    public void open(Configuration parameters) throws Exception {
        duplicateInput = getRuntimeContext().getState(new ValueStateDescriptor<Boolean>("duplicate", Types.BOOLEAN));
    }

    @Override
    public void flatMap(WikipediaEditEvent in, Collector<WikipediaEditEvent> collector) throws Exception {
        if (duplicateInput.value() == null) {
            collector.collect(in);
            duplicateInput.update(true);
        }
    }

}

这里实现的关键就是有一个key-value的flink状态

ProcessFunction去重

java 复制代码
public class DupliacateProcessFunction extends KeyedProcessFunction<String, WikipediaEditEvent, WikipediaEditEvent> {


    ValueState<Boolean> duplicateInput;

    @Override
    public void open(Configuration parameters) throws Exception {
        ValueStateDescriptor stateDescriptor = new ValueStateDescriptor<Boolean>("previousInput", Types.BOOLEAN);
        // 状态ttl超时时间设置
        StateTtlConfig ttlConfig =
                StateTtlConfig.newBuilder(Time.days(1)).setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite)
                        .setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpired)
                        // check 10 keys for every state access
                        .cleanupIncrementally(100, false).build();
        stateDescriptor.enableTimeToLive(ttlConfig);
        duplicateInput = getRuntimeContext().getState(stateDescriptor);
    }

    @Override
    public void processElement(WikipediaEditEvent in, Context context, Collector<WikipediaEditEvent> collector)
            throws Exception {
        if (duplicateInput.value() == null) {
            collector.collect(in);
            duplicateInput.update(true);
        }
    }
}

这里的关键代码也是拥有一个key-value的状态

触发计算的job代码如下

java 复制代码
public class DuplicateJob {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment();
        see.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);

        DataStream<WikipediaEditEvent> edits = see.addSource(new RandomStringSource());

        KeyedStream<WikipediaEditEvent, String> keyedEdits = edits.keyBy(new KeySelector<WikipediaEditEvent, String>() {
            @Override
            public String getKey(WikipediaEditEvent event) {
                return event.getUser();
            }
        });

        // 通过RichFlatMap实现去重
        DataStream<WikipediaEditEvent> result = keyedEdits.flatMap(new DuplicateRichFlatMap());
        // 通过ProcessFunction实现去重
//        DataStream<WikipediaEditEvent> result = keyedEdits.process(new DupliacateProcessFunction());

        result.print();
        see.execute();

    }
}
相关推荐
拓端研究室TRL1 小时前
【梯度提升专题】XGBoost、Adaboost、CatBoost预测合集:抗乳腺癌药物优化、信贷风控、比特币应用|附数据代码...
大数据
黄焖鸡能干四碗1 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
编码小袁1 小时前
探索数据科学与大数据技术专业本科生的广阔就业前景
大数据
WeeJot嵌入式2 小时前
大数据治理:确保数据的可持续性和价值
大数据
zmd-zk3 小时前
kafka+zookeeper的搭建
大数据·分布式·zookeeper·中间件·kafka
激流丶3 小时前
【Kafka 实战】如何解决Kafka Topic数量过多带来的性能问题?
java·大数据·kafka·topic
测试界的酸菜鱼3 小时前
Python 大数据展示屏实例
大数据·开发语言·python
时差9533 小时前
【面试题】Hive 查询:如何查找用户连续三天登录的记录
大数据·数据库·hive·sql·面试·database
Mephisto.java3 小时前
【大数据学习 | kafka高级部分】kafka中的选举机制
大数据·学习·kafka
Mephisto.java3 小时前
【大数据学习 | kafka高级部分】kafka的优化参数整理
大数据·sql·oracle·kafka·json·database