flink分别使用FilterMap和ProcessFunction实现去重逻辑

背景

在日常的工作中,对数据去重是一件很常见的操作,比如我们只需要保留重复记录的第一条,而忽略掉后续重复的记录,达到去重的效果,本文就使用flink的FilterMap和ProcessFunction来实现去重逻辑

FilterMap和ProcessFunction去重实现

filterMap实现去重

java 复制代码
public class DuplicateRichFlatMap extends RichFlatMapFunction<WikipediaEditEvent, WikipediaEditEvent> {

    ValueState<Boolean> duplicateInput;

    @Override
    public void open(Configuration parameters) throws Exception {
        duplicateInput = getRuntimeContext().getState(new ValueStateDescriptor<Boolean>("duplicate", Types.BOOLEAN));
    }

    @Override
    public void flatMap(WikipediaEditEvent in, Collector<WikipediaEditEvent> collector) throws Exception {
        if (duplicateInput.value() == null) {
            collector.collect(in);
            duplicateInput.update(true);
        }
    }

}

这里实现的关键就是有一个key-value的flink状态

ProcessFunction去重

java 复制代码
public class DupliacateProcessFunction extends KeyedProcessFunction<String, WikipediaEditEvent, WikipediaEditEvent> {


    ValueState<Boolean> duplicateInput;

    @Override
    public void open(Configuration parameters) throws Exception {
        ValueStateDescriptor stateDescriptor = new ValueStateDescriptor<Boolean>("previousInput", Types.BOOLEAN);
        // 状态ttl超时时间设置
        StateTtlConfig ttlConfig =
                StateTtlConfig.newBuilder(Time.days(1)).setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite)
                        .setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpired)
                        // check 10 keys for every state access
                        .cleanupIncrementally(100, false).build();
        stateDescriptor.enableTimeToLive(ttlConfig);
        duplicateInput = getRuntimeContext().getState(stateDescriptor);
    }

    @Override
    public void processElement(WikipediaEditEvent in, Context context, Collector<WikipediaEditEvent> collector)
            throws Exception {
        if (duplicateInput.value() == null) {
            collector.collect(in);
            duplicateInput.update(true);
        }
    }
}

这里的关键代码也是拥有一个key-value的状态

触发计算的job代码如下

java 复制代码
public class DuplicateJob {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment();
        see.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);

        DataStream<WikipediaEditEvent> edits = see.addSource(new RandomStringSource());

        KeyedStream<WikipediaEditEvent, String> keyedEdits = edits.keyBy(new KeySelector<WikipediaEditEvent, String>() {
            @Override
            public String getKey(WikipediaEditEvent event) {
                return event.getUser();
            }
        });

        // 通过RichFlatMap实现去重
        DataStream<WikipediaEditEvent> result = keyedEdits.flatMap(new DuplicateRichFlatMap());
        // 通过ProcessFunction实现去重
//        DataStream<WikipediaEditEvent> result = keyedEdits.process(new DupliacateProcessFunction());

        result.print();
        see.execute();

    }
}
相关推荐
阿里云大数据AI技术4 小时前
StarRocks 助力数禾科技构建实时数仓:从数据孤岛到智能决策
大数据
Lx3528 小时前
Hadoop数据处理优化:减少Shuffle阶段的性能损耗
大数据·hadoop
武子康12 小时前
大数据-99 Spark Streaming 数据源全面总结:原理、应用 文件流、Socket、RDD队列流
大数据·后端·spark
阿里云大数据AI技术1 天前
大数据公有云市场第一,阿里云占比47%!
大数据
Lx3521 天前
Hadoop容错机制深度解析:保障作业稳定运行
大数据·hadoop
T06205142 天前
工具变量-5G试点城市DID数据(2014-2025年
大数据
向往鹰的翱翔2 天前
BKY莱德因:5大黑科技逆转时光
大数据·人工智能·科技·生活·健康医疗
鸿乃江边鸟2 天前
向量化和列式存储
大数据·sql·向量化
IT毕设梦工厂2 天前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata
java水泥工2 天前
基于Echarts+HTML5可视化数据大屏展示-白茶大数据溯源平台V2
大数据·echarts·html5