LSTR: 基于Transformer的车道形状预测

LSTR: 基于Transformer的车道形状预测

在计算机视觉领域,车道检测是自动驾驶和智能交通系统中的关键技术之一。我们推出了一种名为LSTR的车道形状预测模型,它基于Transformer架构,实现了端到端的车道形状参数输出。本文将介绍LSTR模型的设计思想、功能特性以及应用场景。

项目背景与意义

传统的车道检测方法通常分为多个阶段,包括特征提取、车道线识别和拟合等,这些阶段需要大量的人工设计和调整,而且容易受到环境光照、路面情况等因素的影响。LSTR的出现将车道检测简化为单阶段任务,极大地提高了检测的准确性和效率。

LSTR模型的特点包括模型参数少、计算复杂度低、训练友好等,不仅在理论上具有吸引力,而且在实际应用中也表现出色。其在TuSimple数据集上达到了96.18%的准确率,为自动驾驶和智能交通领域的应用提供了可靠的技术支持。

LSTR的特性和功能

  • 😎 端到端架构: 直接输出车道形状参数,简化车道检测流程。
  • 超轻量级: 模型参数仅有765,787个,适用于资源受限的环境。
  • 超低复杂度: 计算复杂度仅为574.280M个乘加操作(MACs)。
  • 😎 训练友好: GPU内存消耗低,使用大小为(360, 640, 3)的输入图像,批量大小为16时,仅占用1245MiB的GPU内存。

最新更新

  • 【2021/12/03】🔥 我们的新作品《从单张图像学习预测3D车道形状和相机姿态:基于几何约束》已被AAAI2022接受!预印本论文和代码即将发布!
  • 【2021/11/23】: 我们现在支持自定义数据的训练和测试
  • 【2021/11/16】: 修复了多GPU训练的问题。
  • 【2020/12/06】: 现在我们支持CULane数据集

即将推出的功能

  • LSTR-nano(新的骨干网络):在只使用LSTR 40%的MACs(229.419M)和40%的参数(302,546)的情况下,达到96.33%的TuSimple准确率。
  • 马赛克增强。
  • 基于Loguru的日志记录模块。
  • 基于几何的损失函数。
  • 分割先验。

模型资源库

我们提供了基线LSTR模型文件(在TuSimple训练和验证集上进行了500,000次迭代训练):

  • ./cache/nnet/LSTR/LSTR_500000.pkl(约3.1MB)。

数据准备

请从TuSimple下载并提取带有注释的TuSimple训练、验证和测试集。

我们期望目录结构如下所示:

复制代码
TuSimple/
    LaneDetection/
        clips/
        label_data_0313.json
        label_data_0531.json
        label_data_0601.json
        test_label.json
    LSTR/

设置环境

  • Linux Ubuntu 16.04
bash 复制代码
conda env create --name lstr --file environment.txt

创建环境后,请激活它:

bash 复制代码
conda activate lstr

然后安装依赖:

bash 复制代码
pip install -r requirements.txt

训练和评估

  • 若要训练模型:

(如果您只想使用训练集,请查看./config/LSTR.json并设置"train_split": "train")

bash 复制代码
python train.py LSTR
  • 训练期间可视化图像存储在./results中。
  • 训练期间保存的模型文件(每5000次迭代)存储在./cache中。

要从快照模型文件训练模型:

bash 复制代码
python train.py LSTR --iter 500000
  • 若要评估(在评估单个图像时GPU占用603MiB),然后您将看到论文的结果:
bash 复制代码
python test.py LSTR --testiter 500000 --modality eval --split testing
  • 若要评估FPS(将--batch设置为最大以提高FPS,如果您每个图像重复16次,则GPU占用877MiB):
bash 复制代码
python test.py LSTR --testiter 500000 --modality eval --split testing --batch 16
  • 要评估并将检测到的图像保存在./results/LSTR/500000/testing/lane_debug中:
bash 复制代码
python test.py LSTR --testiter 500000 --modality eval --split testing --debug
  • 若要评估并保存解码器注意力图(存储--debugEnc以可视化编码器注意力图):
bash 复制代码
python test.py LSTR --testiter 500000 --modality eval --split testing --debug --debugDec

若要在一组图像上评估(将您的图像存储在./images中,然后检测结果将保存在./detections中):

bash 复制代码
python test.py LSTR --testiter 500000 --modality images --image_root ./ --debug

引用

复制代码
@InProceedings{LSTR,
author = {Ruijin Liu and Zejian Yuan and Tie Liu and Zhiliang Xiong},
title = {End-to-end Lane Shape Prediction with Transformers},
booktitle = {WACV},
year = {2021}
}

许可证

LSTR采用BSD 3-Clause许可证发布。更多信息请参阅<LICENSE>文件。

贡献

我们积极欢迎您的Pull请求!

致谢

通过LSTR,我们致力于推动车道检测技术的进步,为智能交通系统的发展贡献力量!

相关推荐
救救孩子把7 分钟前
44-机器学习与大模型开发数学教程-4-6 大数定律与中心极限定理
人工智能·机器学习
Rabbit_QL20 分钟前
【LLM评价指标】从概率到直觉:理解语言模型的困惑度
人工智能·语言模型·自然语言处理
呆萌很27 分钟前
HSV颜色空间过滤
人工智能
roman_日积跬步-终至千里41 分钟前
【人工智能导论】02-搜索-高级搜索策略探索篇:从约束满足到博弈搜索
java·前端·人工智能
FL16238631291 小时前
[C#][winform]基于yolov11的淡水鱼种类检测识别系统C#源码+onnx模型+评估指标曲线+精美GUI界面
人工智能·yolo·目标跟踪
爱笑的眼睛111 小时前
从 Seq2Seq 到 Transformer++:深度解构与自构建现代机器翻译核心组件
java·人工智能·python·ai
小润nature1 小时前
AI时代对编程技能学习方式的根本变化(1)
人工智能
AI即插即用2 小时前
即插即用系列 | ECCV 2024 WTConv:利用小波变换实现超大感受野的卷积神经网络
图像处理·人工智能·深度学习·神经网络·计算机视觉·cnn·视觉检测
愚公搬代码3 小时前
【愚公系列】《扣子开发 AI Agent 智能体应用》003-扣子 AI 应用开发平台介绍(选择扣子的理由)
人工智能