【自然语言处理】P1 对文本编码(One-Hot 与 TF-IDF)

目录

对文本编码,目标是将自然语言文本表示为向量,从而便于继续处理和分析文本数据。三种常用对文本编码方法如下:

独热表示(One-hot)

独热表示(One-hot encoding)将句子中的每个单词转换为一个固定长度的二进制向量,其中每个向量表示句子中单词的独热编码。这个过程通常包括建立词库、独热编码两个步骤:

bash 复制代码
# 以这两个句子建立独热表示:
Time flies like an arrow.
Fruit flies like a banana.
  1. 建立词库:首先建立一个词库,包含两个句子中出现所有的单词。一般来说,词库中所有字符小写,且不包含逗号等标点字符。
bash 复制代码
# 上述两个句子的词库为:
{time, fruit, flies, like, a, an, arrow, banana}
  1. 独热编码:对于句子中每个单词,创建一个二进制向量,其长度等于词库的大小。在这个向量中,单词在词库中的位置对应一个1,其余位置都是0。这样,每个单词都得到了唯一的独热编码。
bash 复制代码
# 两个句子的独热编码为:
Time flies like an arrow.
[1, 0, 1, 1, 0, 1, 1, 0]

Fruit flies like a banana.
[0, 1, 1, 1, 1, 0, 0, 1]

独热编码可以确保每个单词都有一个唯一的向量表示,但它的缺点在于,没有捕捉到单词之间的任何语义关系。


TF-IDF

TF-IDF(Term Frequency-Inverse Document Frequency)用于评估一个词对于一个文档集合中一个文档的重要程度。

计算 TF-IDF,我们需要遵循以下五个步骤:

  1. 分词(Tokenization):将文本分解为单词或词组。
  2. 创建文档频率(DF)表:记录每个词在整个文档集合中出现的文档数量。
  3. 计算词频(TF):对于每个词,计算它在每个文档中的出现次数除以该文档的总词数。
  4. 计算逆文档频率(IDF) :使用公式 I D F = log ⁡ N N D F IDF = \log_N \frac{N}{DF} IDF=logNDFN 来计算,其中 N N N 是文档集合的大小, D F DF DF 是词的文档频率。
  5. 计算TF-IDF:将 TF 和 IDF 相乘得到 TF-IDF 值。

e . g . e.g. e.g. 假设我们有以下文档集合:

bash 复制代码
文档1:"The quick brown fox jumps over the lazy dog."
文档2:"The quick brown fox jumps over the lazy dog again."
文档3:"The quick brown fox jumps over the lazy dog for the third time."

我们将使用这些句子来计算词 "fox" 的 TF-IDF 值,五个步骤如下:

  1. 分词
bash 复制代码
文档1:["The", "quick", "brown", "fox", "jumps", "over", "the", "lazy", "dog."]
文档2:["The", "quick", "brown", "fox", "jumps", "over", "the", "lazy", "dog", "again."]
文档3:["The", "quick", "brown", "fox", "jumps", "over", "the", "lazy", "dog", "for", "the", "third", "time."]
  1. 创建 DF 表

    • "fox" 在 文档1、2、3中都出现了,所以 DF = 3。
  2. 计算 TF

    • 文档1中 "fox" 的 TF = 1/9 = 0.1111
    • 文档2中 "fox" 的 TF = 1/10 = 0.1
    • 文档3中 "fox" 的 TF = 1/12 = 0.0833
  3. 计算 IDF

    • I D F = l o g N ( N D F ) IDF = log_N (\frac N {DF}) IDF=logN(DFN)
    • 假设整个文档集合的大小 N = 1000,那么 I D F = l o g 1000 ( 1000 3 ) ≈ 1.5849 IDF = log_{1000} (\frac {1000} 3) ≈ 1.5849 IDF=log1000(31000)≈1.5849
  4. 计算 TF-IDF

    • 文档1中 "fox" 的 TF-IDF = 0.1111 * 1.5849 ≈ 0.176
    • 文档2中 "fox" 的 TF-IDF = 0.1 * 1.5849 ≈ 0.1585
    • 文档3中 "fox" 的 TF-IDF = 0.0833 * 1.5849 ≈ 0.132

因此,词 "fox" 在文档1、文档2和文档3中的 TF-IDF 值分别是 0.176、 0.1585 和 0.132。

TF-IDF值越高,意味着这个词在对应文档中的重要性越高。


此外

此外,还有很多其他对文本编码方法,如:

1\] RNN、**LSTM** 深度学习模型通过训练,可以捕捉文本中长期依赖关系,并生成能够反映文本含义的复杂向量表示。 \[2\] **注意力机制** 使模型能够关注输入序列中不同部分,帮助模型集中在最重要的单词或词组上,从而生成更有效的向量表示。 \[3\] 词嵌入方法如 **Word2Vec** 和 **GloVe** 将单词映射到连续向量空间,相似的单词会有相似的向量表示。能够有效捕捉单词的语义和句法关系。 这些方法都将在后续博文中单独介绍。 *** ** * ** *** 发布:2024/2/2 版本:第一版 如有任何疑问,请联系我,谢谢!

相关推荐
出门吃三碗饭4 小时前
如何在LLM大语言模型上微调来优化数学推理能力?
android·人工智能·语言模型
小白狮ww4 小时前
清华联合字节推出 HuMo,实现三模态协同生成人物视频
人工智能·深度学习·机器学习·音视频·视频生成·多模态模型·人物视频
RAG专家6 小时前
【Mixture-of-RAG】将文本和表格与大型语言模型相结合
人工智能·语言模型·rag·检索增强生成
星期天要睡觉9 小时前
自然语言处理(NLP)——自然语言处理原理、发展历程、核心技术
人工智能·自然语言处理
低音钢琴9 小时前
【人工智能系列:机器学习学习和进阶01】机器学习初学者指南:理解核心算法与应用
人工智能·算法·机器学习
大千AI助手10 小时前
Hoeffding树:数据流挖掘中的高效分类算法详解
人工智能·机器学习·分类·数据挖掘·流数据··hoeffding树
新知图书11 小时前
大模型微调定义与分类
人工智能·大模型应用开发·大模型应用
山烛11 小时前
一文读懂YOLOv4:目标检测领域的技术融合与性能突破
人工智能·yolo·目标检测·计算机视觉·yolov4
大千AI助手11 小时前
独热编码:分类数据处理的基石技术
人工智能·机器学习·分类·数据挖掘·特征工程·one-hot·独热编码
钱彬 (Qian Bin)11 小时前
项目实践4—全球证件智能识别系统(Qt客户端开发+FastAPI后端人工智能服务开发)
人工智能·qt·fastapi