图解快速排序核心原理,了解快速排序为什么快?

在排序的算法中,1945 年由冯诺依曼发明归并排序(Merge Sort),是一种典型利用分治策略高效解决问题的算法。

然而,归并排序的缺陷在于其需要额外存储空间。这引发了一个问题:能不能有一种算法 ,既不依赖额外空间,又能利用分治思想进行原地排序?

快速排序正是这样一种算法。不同于归并排序,快速排序将重心放在"分"上,让"治"自然发生。

快速排序的核心原理

快速排序分为两个核心过程组成:

划分(Partition): 选择数组中的一个元素为支点(pivot),通过一次遍历,将小于等于支点的元素移到左侧,大于支点的元素移动到右侧。

递归(recursion): 对左右两侧的子数组,重复执行上述操作,直到整个数组完全有序。

选择合适的支点(pivot)

我们首先来选择支点(pivot),支点的选择对快速排序的效率影响显著。

理想情况下,支点选择数组中位数,这样能确保划分后的子数组尽量平衡,从而最大限度地发挥分治的效果。

但在实际操作中,每次都去找中位数从性能上看,似乎划不来。因此,对于随机排列的数组而言,直接选择最后一个元素作为支点,不失为一种好方法。

划分(Partition)过程

选择好支点后,我们可以对数组进行划分操作。这也是快速排序算法中最重要的部分。

在这一过程中,通过一次数组扫描并设置两个指针 ij,形成所谓的"双指针遍历",同时确保在扫描过程中满足以下条件:

  • [lo, i] 之间的元素都 <=pivot
  • [i+1, j-1] 之间的元素都 >pivot
  • [j, hi-1] 之间的元素未被扫描。

我们来详细描述一下"双指针遍历"过程中的各个阶段:

1. 扫描初始化

在扫描开始前,我们设置 i=lo-1j=lo 以保持上述三个条件成立。

在初始状态下 [j, hi-1] 之间是所有未扫描的元素,[lo, i] (<=pivot) 和 [i+1, j-1] (>pivot) 的区间都不存在。

2. 扫描过程

A[j] > pivot 时,j 的值加 1。保证 [i+1, j-1] 之间的元素满足 >piovt

A[j] <= pivot 时,i1,交换 A[i]A[j] 的值之后,j 再加 1

这样同时保证了 [lo, i] 之间的元素满足 <=pivot,并且 [i+1, j-1] 之间的元素满足 >piovt

3. 扫描结束

扫描完成时 j = hi,此时我们需要将支点 A[hi] 置于正确位置。通过交换 A[hi]A[i+1],支点就位,返回其索引。

将上述的扫描过程转化为代码是一个有趣的挑战,你可以先思考一下如何实现。这里提供一个我编写的函数,以供参考:

python 复制代码
def partition(A, lo, hi):
    pivot = A[hi]
    i = lo - 1
    for j in range(lo, hi):
        if A[j] <= pivot :
            i = i + 1
            A[i], A[j] = A[j], A[i]
    A[i + 1], A[hi] = A[hi], A[i + 1]
    return i + 1

下面的动图更好地展示了双指针遍历扫描代码的执行过程:

注意:你可以在我的 github 仓库中查看源代码 quicksort01

递归:实现快速排序

我们来完成最后一步,通过递归不断地对子数组进行划分,直到每个子数组只有一个元素,此时整个数组就被排序完成。

python 复制代码
def quicksort(A, lo, hi):
    if lo < hi:
        pivot_index = partition(A, lo, hi)
        quicksort(A, lo, pivot_index - 1)
        quicksort(A, pivot_index + 1, hi)

整个递归过程如下面动图所示:

详细递归执行过程的静态示意图如下:

注意:你可以在我的 github 仓库中查看源代码 quicksort01

双指针遍历

在划分过程中,我们采用了双指针技术,这是一种常见的算法策略。该技巧有以下常见步骤和策略:

  • 确定指针的移动策略: 确定如何移动两个指针以达到目的。
  • 计算和更新结构: 使用两个指针计算结果,并根据需要更新结果。
  • 处理边界和特殊情况: 考虑两个指针到达数组边界时的情况。

双指针技术不仅用于快速排序,还广泛应用于其他算法和问题,例如:在有序数组中查找特定和的两个数;计算数组的最大/最小子数组和;检测链表中是否存在环。

我们可以思考一下:是否还有其它双指针移动策略来实现快速排序中的划分过程?

双向的双指针遍历策略

在上面的内容中,我们详细介绍了快速排序算法,并通过双指针遍历技术成功实现了算法的核心部分------划分(partition)。

这种算法不仅简单易懂,其代码量也相对较少。

但如果我们考虑到一种特殊情况:数组完全由相同的元素组成,根据先前的算法进行划分,性能就会非常糟糕。

此时,每次支点都不变动,导致划分会将长度为 n 的数组分为长度为 n-10 的两个子数组。这使得递归深度达到了 n 层,而每一层都需要 O(n) 的时间复杂度来去除一个元素,因此总的运行时间达到了 O(n^2)

为了解决这个问题,我们对双指针的遍历方向进行了调整,采用了双向划分策略。

双向划分(partition)过程

首先,我们选择数组的第一个元素作为支点。在划分过程中,两个指针 ij 分别初始化在数组的两端。

i 从左侧开始向右扫描,直到找到一个大于等于支点的元素为止;而 j 从右侧开始向左扫描,直至遇到小于等于支点的元素。在这个过程中,我们需要确保满足以下三个条件:

  • [lo, i-1] 之间的元素都 <=pivot
  • [i, j] 之间的元素未被扫描。
  • [j+1, hi] 之间的元素都 >=pivot

同样,我们也来详细描述一下这种"双指针遍历"过程中的各个阶段:

1. 扫描初始化

扫描开始之前,设置 i=loj=hi+1,确保上述条件得以满足。

2. 扫描过程

  • 从数组左端开始,i 向右扫描,直到遇到大于或等于支点的元素。
  • 从数组右端开始,j 向左扫描,直到遇到小于或等于支点的元素。
  • 交换这两个元素,然后继续上述的扫描过程。

3. 扫描结束

ij 两指针相遇时,扫描结束。此时,为了将支点 A[lo] 放置在其正确的位置,我们需要交换 A[lo] 与 A[j]。完成这一操作后,返回支点的索引值。

将上述的扫描过程转化为代码是一个有趣的挑战,你可以先思考一下如何实现。这里提供一个我编写的函数,以供参考:

python 复制代码
def partition(arr, low, high):
    pivot = arr[low]
    i = low
    j = high + 1

    while True:
        i += 1
        while i <= high and arr[i] < pivot:
            i += 1

        j -= 1
        while arr[j] > pivot:
            j -= 1

        if i > j:
            break

        arr[i], arr[j] = arr[j], arr[i]

    arr[low], arr[j] = arr[j], arr[low]

    return j

值得注意的是,在 j 向左扫描时,我们并未设置 j>=low 的条件,因为支点正是 arr[low],它不可能小于自己。

注意:你可以在我的 github 仓库中查看源代码 quicksort02

重复元素数组

现在,我们再次考虑之前所提到的那种特殊情况:数组完全由相同的元素组成。

使用新的划分策略,当遇到相同元素时,扫描会停止,并交换 ij 指针的值。这样的操作虽然增加了元素交换的次数,但是得到的支点使左右子数组更加均衡,从而充分利用了分治策略,使得算法的运行时间仍为 O(nlogn)

快速排序的优化

我们已经深入探讨了快速排序算法及其两种主要的划分策略。

这两种策略都使用了固定元素作为支点(pivot)。对于随机输入的数据,这样的方法通常都能取得良好的效果。

但是,对于特定的输入模式,例如完全升序的数组,选择第一个元素作为支点会导致划分后的子数组极其不平衡,从而影响排序效率。

优化策略1:选择更优的支点

为了确保划分后的子数组尽可能平衡,我们需要优化支点的选择策略。

计算数组的中位数可能代价昂贵。因此,一种简单而有效的方法是选择数组中的三个元素------首、尾和中点,并将其中的中值作为支点。

这样,我们能够大幅提高支点的选择质量。当然,为了进一步增强算法的鲁棒性,我们可以考虑从更多元素中选择支点。

python 复制代码
def media_three(arr, lo, mid, hi):
    a, b, c = arr[lo], arr[mid], arr[hi]
    if (a <= b <= c) or (c <= b <= a):
        return mid
    elif (b <= a <= c) or (c <= a <= b):
        return lo
    else:
        return hi

注意:你可以在我的 github 仓库中查看源代码 quicksort03

优化策略2:混合使用插入排序

对于较小的数组,插入排序往往比快速排序更为高效。因此,结合快速排序和插入排序,采用混合排序策略,可以进一步提高排序效率。

具体而言,当待排序的数组大小达到某一阈值时,我们切换到插入排序。

至于何时切换,即数组的大小阈值是多少,这与具体系统有关。

《算法》中提到,5-15 之间的值在大多数情况下都表现良好。《编程珠玑》中,建议选用 30-70 之间的值,其中 50 被认为是一个较为理想的选择。

当然,具体的阈值最好根据实际应用场景进行调整。

在以下的代码示例中,我们使用变量 M 作为这个阈值。

python 复制代码
def quicksort(A, lo, hi):
    M = 5
    if hi <= lo + M:
        insertionsort(A, lo, hi)
        return

    pivot_index = partition(A, lo, hi)
    quicksort(A, lo, pivot_index - 1)
    quicksort(A, pivot_index + 1, hi)

注意:你可以在我的 github 仓库中查看源代码 quicksort04

总结

快速排序的"快速"特性源自其独特的算法设计:精心挑选的支点和高效的双指针遍历。

在快速排序中,支点的选择扮演着关键角色。理想情况下,支点能够将数组平均分割,现分治策略的最大效率。尽管在实践中难以始终选出最佳支点,但通过合理的方法(如三数取中法),我们可以逼近理想情况,有效降低排序时间。

双指针遍历策略进一步提高了排序效率。通过在数组中移动两个指针,并在合适时刻交换元素,这种方法实现了原地排序,即无需额外空间。这是快速排序相较于其他算法(例如归并排序)的显著优势。

结合这两种策略,快速排序不仅能够在平均情况下达到接近最优的时间复杂度(O(nlogn)),而且在内存使用上也极为高效,这使得它在多种场景下仍是一种广受欢迎的排序算法。

然而,快速排序也存在局限性。在特定数据排列下(如已排序或重复元素众多的数组),其性能可能不理想,甚至可能退化至 O(n^2)。此外,极端情况下的不稳定性也值得注意。

因此,理解快速排序的局限性对于选择和应用合适的排序算法至关重要。尽管快速排序在多数情况下表现出色,但在特定应用场景中,其他排序算法可能更适合。


更多内容,欢迎关注我的公众号:dingtingli

WWH 系列文章列表:

[1] Why - 为什么 JS 更像一门编译型语言?

[2] What - 什么是依赖注入?

[3] What - 如何清晰地理解算法复杂度 Big O?

[4] How - 不同的语言都如何处理错误?

[5] How - 面向对象语言如何处理异常?

[6] Why - 为什么排序算法复杂度上限是 O(NlogN)?

[7] Why - 为什么排序算法还是不够快?

最近文章列表:

[1] 看图聊算法:一个游戏让你理解二分法的本质

[2] 看图聊算法:还是一个游戏,让你理解三分法的本质

[3] 看图聊算法:为什么插入排序效率不高,却是使用频率最高的排序算法

[4] 看图聊算法:归并排序一个被教科书嫌弃的算法,我们为什么还要学

[5] 看图聊算法:冯·诺依曼的第一个计算机程序是怎么做出来的?

[6] 看图聊算法:快速排序为什么快?

[7] 不刷题,不面试,来看看算法学习在编程世界中的真正价值

[8] 看图聊算法:堆排序,我们学习它可能并不是为了排序

[9] 看图聊算法:为什么快速排序不够快?

[10] 看图聊算法:为什么堆排序不够快?

[11] 看图聊算法:为什么排序算法还是不够快?

[12] 一张图读懂异步编程模型是如何运作的

[13] 一张图读懂并发/并行/异步的区别

[14] GitHub 秘籍:设置 Git 代理,让你的代码提交变得畅通无阻

相关推荐
浮生如梦_1 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
paopaokaka_luck2 小时前
【360】基于springboot的志愿服务管理系统
java·spring boot·后端·spring·毕业设计
励志成为嵌入式工程师3 小时前
c语言简单编程练习9
c语言·开发语言·算法·vim
捕鲸叉3 小时前
创建线程时传递参数给线程
开发语言·c++·算法
A charmer3 小时前
【C++】vector 类深度解析:探索动态数组的奥秘
开发语言·c++·算法
码农小旋风3 小时前
详解K8S--声明式API
后端
Peter_chq3 小时前
【操作系统】基于环形队列的生产消费模型
linux·c语言·开发语言·c++·后端
Yaml44 小时前
Spring Boot 与 Vue 共筑二手书籍交易卓越平台
java·spring boot·后端·mysql·spring·vue·二手书籍
小小小妮子~4 小时前
Spring Boot详解:从入门到精通
java·spring boot·后端
hong1616884 小时前
Spring Boot中实现多数据源连接和切换的方案
java·spring boot·后端