Prompt Tuning 和 Delta Tuning 针对预训练语言模型进行微调

Prompt Tuning 和 Delta Tuning 是两种针对预训练语言模型进行微调的方法,它们旨在提高微调的效率和减少所需的训练数据量。下面分别介绍这两种方法以及它们之间的区别。

Prompt Tuning

Prompt Tuning 是一种微调方法,它通过修改模型的输入(即提示)来引导模型生成期望的输出,而不是直接修改模型的参数。这种方法通常用于指令调整或任务调整,其中模型的输入被设计成包含有关要执行的任务的提示信息。

在 Prompt Tuning 中,通常只有一小部分模型参数(例如,与提示相关的嵌入层)会被更新,而预训练模型的主干部分保持不变。这种方法可以减少过拟合的风险,并且由于需要调整的参数较少,因此可以在更少的数据上进行训练。

Delta Tuning

Delta Tuning(也称为 Adapter Tuning 或 Prefix Tuning)是一种微调方法,它通过在预训练模型的现有参数上添加一小部分可训练的参数(称为适配器或前缀)来适应新的任务。这些额外的参数通常很小,因此训练它们所需的计算资源较少。

Delta Tuning 允许模型在不改变原始预训练参数的情况下适应新的任务,这意味着可以在保持模型泛化能力的同时,快速适应特定的任务或领域。这种方法特别适合于需要频繁切换任务或多任务学习的场景。

区别

  1. 参数更新方式:
  • Prompt Tuning 更新的是输入提示的表示,而不是模型参数本身。

  • Delta Tuning 在原始模型参数的基础上添加了额外的可训练参数。

  1. 参数数量:
  • Prompt Tuning 通常只调整与提示相关的少量参数。

  • Delta Tuning 添加了额外的参数,但这些参数通常比整个模型参数集小得多。

  1. 适用场景:
  • Prompt Tuning 适用于需要通过修改输入来引导模型输出的场景。

  • Delta Tuning 适用于需要模型快速适应新任务或多任务学习的场景。

  1. 过拟合风险:
  • Prompt Tuning 由于只调整少量参数,过拟合的风险较低。

  • Delta Tuning 虽然添加了额外参数,但由于参数数量有限,过拟合风险也相对较低。

  1. 计算资源:
  • Prompt Tuning 和 Delta Tuning 都旨在减少微调所需的计算资源,但 Delta Tuning 可能需要更多的资源来训练额外的参数。

总的来说,Prompt Tuning 和 Delta Tuning 都是为了在保持预训练模型泛化能力的同时,快速适应新任务而设计的微调方法。它们通过减少需要调整的参数数量来降低训练成本,并且可以在有限的数据上进行有效训练。选择哪种方法取决于具体的应用场景和资源限制。

相关推荐
Humbunklung8 分钟前
Sigmoid函数简介及其Python实现
开发语言·python·深度学习·机器学习
Swee119 分钟前
应对过度处方挑战:为药物推荐任务微调大语言模型(Xiangnan He)
人工智能·语言模型·自然语言处理
dog25025 分钟前
BBR 的 RTT 公平性问题求解
人工智能·算法·机器学习
odoo中国41 分钟前
机器学习实操 第一部分 机器学习基础 第7章 集成学习与随机森林
随机森林·机器学习·集成学习
X-funbean44 分钟前
Multicore-TSNE
机器学习·数据可视化
莱茶荼菜1 小时前
SIFT特征点检测
人工智能·深度学习·计算机视觉
荷塘阅色1 小时前
【机器学习】人工智能在电力电子领域的应用
人工智能·机器学习·电力电子
James. 常德 student1 小时前
长短期记忆网络(LSTM)
人工智能·rnn·lstm
2401_890236042 小时前
艺术与科技的双向奔赴——高一鑫荣获加州联合表彰
人工智能·科技
奋斗者1号2 小时前
数据集拆分:机器学习中的最佳实践
人工智能·机器学习