Prompt Tuning 和 Delta Tuning 针对预训练语言模型进行微调

Prompt Tuning 和 Delta Tuning 是两种针对预训练语言模型进行微调的方法,它们旨在提高微调的效率和减少所需的训练数据量。下面分别介绍这两种方法以及它们之间的区别。

Prompt Tuning

Prompt Tuning 是一种微调方法,它通过修改模型的输入(即提示)来引导模型生成期望的输出,而不是直接修改模型的参数。这种方法通常用于指令调整或任务调整,其中模型的输入被设计成包含有关要执行的任务的提示信息。

在 Prompt Tuning 中,通常只有一小部分模型参数(例如,与提示相关的嵌入层)会被更新,而预训练模型的主干部分保持不变。这种方法可以减少过拟合的风险,并且由于需要调整的参数较少,因此可以在更少的数据上进行训练。

Delta Tuning

Delta Tuning(也称为 Adapter Tuning 或 Prefix Tuning)是一种微调方法,它通过在预训练模型的现有参数上添加一小部分可训练的参数(称为适配器或前缀)来适应新的任务。这些额外的参数通常很小,因此训练它们所需的计算资源较少。

Delta Tuning 允许模型在不改变原始预训练参数的情况下适应新的任务,这意味着可以在保持模型泛化能力的同时,快速适应特定的任务或领域。这种方法特别适合于需要频繁切换任务或多任务学习的场景。

区别

  1. 参数更新方式:
  • Prompt Tuning 更新的是输入提示的表示,而不是模型参数本身。

  • Delta Tuning 在原始模型参数的基础上添加了额外的可训练参数。

  1. 参数数量:
  • Prompt Tuning 通常只调整与提示相关的少量参数。

  • Delta Tuning 添加了额外的参数,但这些参数通常比整个模型参数集小得多。

  1. 适用场景:
  • Prompt Tuning 适用于需要通过修改输入来引导模型输出的场景。

  • Delta Tuning 适用于需要模型快速适应新任务或多任务学习的场景。

  1. 过拟合风险:
  • Prompt Tuning 由于只调整少量参数,过拟合的风险较低。

  • Delta Tuning 虽然添加了额外参数,但由于参数数量有限,过拟合风险也相对较低。

  1. 计算资源:
  • Prompt Tuning 和 Delta Tuning 都旨在减少微调所需的计算资源,但 Delta Tuning 可能需要更多的资源来训练额外的参数。

总的来说,Prompt Tuning 和 Delta Tuning 都是为了在保持预训练模型泛化能力的同时,快速适应新任务而设计的微调方法。它们通过减少需要调整的参数数量来降低训练成本,并且可以在有限的数据上进行有效训练。选择哪种方法取决于具体的应用场景和资源限制。

相关推荐
Teacher.chenchong6 分钟前
GEE云端林业遥感:贯通森林分类、森林砍伐与退化监测、火灾评估、森林扰动监测、森林关键生理参数(树高/生物量/碳储量)反演等
人工智能·分类·数据挖掘
@sinner2 小时前
你好,Scikit-learn:从零开始你的第一个机器学习项目
python·机器学习·scikit-learn
2501_941147422 小时前
人工智能赋能智慧城市互联网应用:智能交通、能源与公共管理优化实践探索》
人工智能
咚咚王者2 小时前
人工智能之数据分析 numpy:第十五章 项目实践
人工智能·数据分析·numpy
Jay20021112 小时前
【机器学习】7-9 分类任务 & 逻辑回归的成本函数 & 逻辑回归的梯度下降
笔记·机器学习·分类
水月wwww3 小时前
深度学习——神经网络
人工智能·深度学习·神经网络
司铭鸿3 小时前
祖先关系的数学重构:从家谱到算法的思维跃迁
开发语言·数据结构·人工智能·算法·重构·c#·哈希算法
机器之心3 小时前
从推荐算法优化到AI4S、Pico和大模型,杨震原长文揭秘字节跳动的技术探索
人工智能·openai
johnny2333 小时前
AI加持测试工具汇总:Strix、
人工智能·测试工具
机器之心3 小时前
哈工大深圳团队推出Uni-MoE-2.0-Omni:全模态理解、推理及生成新SOTA
人工智能·openai