时序预测 | MATLAB实现基于CNN-BiLSTM-AdaBoost卷积双向长短期记忆网络结合AdaBoost时间序列预测

时序预测 | MATLAB实现基于CNN-BiLSTM-AdaBoost卷积双向长短期记忆网络结合AdaBoost时间序列预测

目录

    • [时序预测 | MATLAB实现基于CNN-BiLSTM-AdaBoost卷积双向长短期记忆网络结合AdaBoost时间序列预测](#时序预测 | MATLAB实现基于CNN-BiLSTM-AdaBoost卷积双向长短期记忆网络结合AdaBoost时间序列预测)

预测效果







基本介绍

1.Matlab实现CNN-BiLSTM-Adaboost时间序列预测,卷积双向长短期记忆神经网络结合AdaBoost时间序列预测(风电功率预测);

2.运行环境为Matlab2021b;

3.data为数据集,excel数据,单变量时间序列数据,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MAE、MAPE、MSE、RMSE、RPD多指标评价;

模型描述

CNN-BiLSTM-AdaBoost是一种将CNN-BiLSTM和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱学习器组合起来形成一个强学习器,其中每个学习器都是针对不同数据集和特征表示训练的。CNN-BiLSTM-AdaBoost算法的基本思想是将CNN-BiLSTM作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个CNN-BiLSTM模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

程序设计

clike 复制代码
% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
options0 = trainingOptions('adam', ...                 % 优化算法Adam
    'MaxEpochs', 100, ...                            % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', 0.01, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod',70, ...                   % 训练100次后开始调整学习率
    'LearnRateDropFactor',0.01, ...                    % 学习率调整因子
    'L2Regularization', 0.001, ...         % 正则化参数
    'ExecutionEnvironment', 'cpu',...                 % 训练环境
    'Verbose', 1, ...                                 % 关闭优化过程
    'Plots', 'none');                    % 画出曲线

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
DreamNotOver2 天前
基于Scikit-learn集成学习模型的情感分析研究与实现
python·scikit-learn·集成学习
pan0c232 天前
集成学习(随机森林算法、Adaboost算法)
人工智能·机器学习·集成学习
pan0c232 天前
集成学习 —— 梯度提升树GBDT、XGBoost
人工智能·机器学习·集成学习
l12345sy2 天前
Day22_【机器学习—集成学习(2)—Bagging—随机森林算法】
算法·机器学习·集成学习·bagging·随机森林算法
l12345sy2 天前
Day22_【机器学习—集成学习(4)—Boosting—GBDT算法】
机器学习·集成学习·boosting·残差·gbdt算法·负梯度
DatGuy2 天前
Week 15: 深度学习补遗:集成学习初步
人工智能·深度学习·集成学习
源于花海3 天前
Energy期刊论文学习——基于集成学习模型的多源域迁移学习方法用于小样本实车数据锂离子电池SOC估计
论文阅读·迁移学习·集成学习·电池管理
THMAIL3 天前
机器学习从入门到精通 - 集成学习核武器:随机森林与XGBoost工业级应用
人工智能·python·算法·随机森林·机器学习·集成学习·sklearn
简简单单做算法8 天前
基于GA遗传优化的双向LSTM融合多头注意力(BiLSTM-MATT)时间序列预测算法matlab仿真
人工智能·matlab·时间序列预测·bilstm·ga遗传优化·bilstm-matt·多头注意力
Y|11 天前
GBDT(Gradient Boosting Decision Tree,梯度提升决策树)总结梳理
决策树·机器学习·集成学习·推荐算法·boosting