时序预测 | MATLAB实现基于CNN-BiLSTM-AdaBoost卷积双向长短期记忆网络结合AdaBoost时间序列预测

时序预测 | MATLAB实现基于CNN-BiLSTM-AdaBoost卷积双向长短期记忆网络结合AdaBoost时间序列预测

目录

    • [时序预测 | MATLAB实现基于CNN-BiLSTM-AdaBoost卷积双向长短期记忆网络结合AdaBoost时间序列预测](#时序预测 | MATLAB实现基于CNN-BiLSTM-AdaBoost卷积双向长短期记忆网络结合AdaBoost时间序列预测)

预测效果







基本介绍

1.Matlab实现CNN-BiLSTM-Adaboost时间序列预测,卷积双向长短期记忆神经网络结合AdaBoost时间序列预测(风电功率预测);

2.运行环境为Matlab2021b;

3.data为数据集,excel数据,单变量时间序列数据,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MAE、MAPE、MSE、RMSE、RPD多指标评价;

模型描述

CNN-BiLSTM-AdaBoost是一种将CNN-BiLSTM和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱学习器组合起来形成一个强学习器,其中每个学习器都是针对不同数据集和特征表示训练的。CNN-BiLSTM-AdaBoost算法的基本思想是将CNN-BiLSTM作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个CNN-BiLSTM模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

程序设计

clike 复制代码
% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
options0 = trainingOptions('adam', ...                 % 优化算法Adam
    'MaxEpochs', 100, ...                            % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', 0.01, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod',70, ...                   % 训练100次后开始调整学习率
    'LearnRateDropFactor',0.01, ...                    % 学习率调整因子
    'L2Regularization', 0.001, ...         % 正则化参数
    'ExecutionEnvironment', 'cpu',...                 % 训练环境
    'Verbose', 1, ...                                 % 关闭优化过程
    'Plots', 'none');                    % 画出曲线

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
补三补四12 小时前
XGBoost(eXtreme Gradient Boosting)算法的核心原理与底层实现技术
算法·集成学习·boosting
向量引擎小橙14 小时前
数字孪生进阶版:“全脑城市”如何改变我们的生活
大数据·人工智能·深度学习·生活·集成学习
wjykp1 天前
109~111集成学习
人工智能·机器学习·集成学习
软件算法开发4 天前
基于蘑菇繁殖优化的LSTM深度学习网络模型(MRO-LSTM)的一维时间序列预测算法matlab仿真
深度学习·算法·matlab·lstm·时间序列预测·蘑菇繁殖优化·mro-lstm
智算菩萨4 天前
【Python机器学习】Bagging 与 Boosting:集成学习的两种风格
机器学习·集成学习·boosting
光羽隹衡5 天前
集成学习之随机森林
随机森林·机器学习·集成学习
Pyeako7 天前
机器学习--集成学习之随机森林&贝叶斯算法
python·算法·随机森林·机器学习·集成学习·贝叶斯算法
core5127 天前
Adaboost (Adaptive Boosting):错题本上的逆袭
机器学习·adaboost·boosting
天呐草莓7 天前
集成学习 (ensemble learning)
人工智能·python·深度学习·算法·机器学习·数据挖掘·集成学习
木头左9 天前
集成学习方法在LSTM交易预测中的应用多元入参的作用
机器学习·lstm·集成学习