基于WOA鲸鱼优化的VMD-GRU时间序列预测算法matlab仿真

目录

1.前言

2.算法运行效果图预览

3.算法运行软件版本

4.部分核心程序

5.算法仿真参数

6.算法理论概述

6.1变分模态分解(VMD)

[6.2 GRU](#6.2 GRU)

7.参考文献

8.算法完整程序工程


1.前言

时间序列预测在能源、气象等领域具有重要应用价值。传统方法如ARIMA、SVM等在处理非线性、非平稳序列时存在局限性,而深度学习模型(如GRU)虽能捕捉时序特征,但对初始参数敏感,且复杂序列需预处理以提升预测精度。变分模态分解(VMD)可将复杂时序分解为多个平稳模态分量,GRU可有效建模序列长期依赖关系,WOA优化则用于优化GRU的关键参数,形成 "分解-优化-预测" 的完整框架。该算法通过多技术协同,提升时序预测的准确性和鲁棒性。

2.算法运行效果图预览

(完整程序运行后无水印)

3.算法运行软件版本

Matlab2024b(推荐)或者matlab2022a

4.部分核心程序

(完整版代码包含中文注释和操作步骤视频)

复制代码
...................................................................
    layers = [ ...
        sequenceInputLayer(indim)             
        gruLayer(Nlayer)                                               
        fullyConnectedLayer(outdim)        
        regressionLayer];
 
    %训练
    [net,INFO] = trainNetwork(Pxtrain, Txtrain, layers, options);
    Rerr = INFO.TrainingRMSE;
    Rlos = INFO.TrainingLoss;
    %预测
    Tpre1  = predict(net, Pxtrain); 
    Tpre2  = predict(net, Pxtest); 
    
    %反归一化
    TNpre1 = mapminmax('reverse', Tpre1, Norm_O); 
    TNpre2 = mapminmax('reverse', Tpre2, Norm_O); 
    %数据格式转换
    TNpre1s(d,:)  = cell2mat(TNpre1);
    TNpre2s(d,:)  = cell2mat(TNpre2);
    T_trains(d,:) = T_train;
    T_tests(d,:)  = T_test;
    Rerrs(d,:)=Rerr;
    Rloss(d,:)=Rlos;
end
226

5.算法仿真参数

复制代码
%每个变量的取值范围
tmps(1,:)    = [10,100]; %
tmps(2,:)    = [0.0001;0.05]; %
 
Num          = 10;  %搜索数量
Iters        = 5; %迭代次数
D            = 2; %搜索空间维数
woa_idx      = zeros(1,D);
woa_get      = inf; 
%每个变量的取值范围
tmps(1,:)    = [10,100]; %
tmps(2,:)    = [0.0001;0.05]; %

6.算法理论概述

6.1变分模态分解VMD

VMD是一种自适应信号分解方法,通过构建变分模型将原始序列分解为若干模态分量(IMF),每个分量对应特定频率尺度,且带宽之和最小化。该过程通过交替迭代更新各模态的频率和幅值实现,无需预设分解层数(实际应用中需结合数据特性确定或优化)。

6.2 GRU

门控循环单元解决传统RNN的梯度消失 / 爆炸问题,同时简化了长短期记忆网络(LSTM)的结构,在保持相似性能的前提下降低了计算复杂度。GRU的核心优势在于:

能有效捕捉序列数据中的长期依赖关系(如文本中的上下文关联、时间序列中的历史趋势);

结构比LSTM更简洁(仅含2个门控机制),训练速度更快;

在自然语言处理(NLP)、语音识别、时间序列预测等领域表现优异。

GRU通过门控机制控制信息的流动与遗忘,避免了传统 RNN 在长序列中梯度衰减的问题。其核心思想是:对于输入的序列信息,动态决定哪些信息需要保留(记忆),哪些信息需要更新(替换)。

7.参考文献

1\]彭德烊,赵胜利,吴圆圆,et al.基于VMD和LSTM的全球平均气温预测\[J\].Climate Change Research Letters, 2024, 13.DOI:10.12677/ccrl.2024.135122. \[2\]Sun H , Yu Z , Zhang B .Research on short-term power load forecasting based on VMD and GRU\[J\].PLoS ONE (v.1;2006), 2024, 19(7):21.DOI:10.1371/journal.pone.0306566. ## 8.算法完整程序工程 **OOOOO** **OOO** **O**

相关推荐
yugi9878382 小时前
基于MATLAB强化学习的单智能体与多智能体路径规划算法
算法·matlab
IT猿手10 小时前
基于强化学习的多算子差分进化路径规划算法QSMODE的机器人路径规划问题研究,提供MATLAB代码
算法·matlab·机器人
fie888914 小时前
基于MATLAB的转子动力学建模与仿真实现(含碰摩、不平衡激励)
开发语言·算法·matlab
机器学习之心15 小时前
基于GRU门控循环单元的轴承剩余寿命预测MATLAB实现
深度学习·matlab·gru·轴承剩余寿命预测
简简单单做算法15 小时前
基于FFT粗估计和LS最小二乘法精估计的正弦信号参数估计和检测matlab仿真
matlab·最小二乘法·参数估计·fft粗估计·ls最小二乘法
kaikaile199515 小时前
基于MATLAB的滑动轴承弹流润滑仿真程序实现
开发语言·matlab
Not Dr.Wang4221 天前
FIR数字滤波器设计的两种实现
matlab
3GPP仿真实验室1 天前
【MATLAB源码】CORDIC-QR :基于Cordic硬件级矩阵QR分解
开发语言·matlab·矩阵
民乐团扒谱机1 天前
【微实验】机器学习之集成学习 GBDT和XGBoost 附 matlab仿真代码 复制即可运行
人工智能·机器学习·matlab·集成学习·xgboost·gbdt·梯度提升树
Evand J1 天前
TDOA(到达时间差)的GDOP和CRLB计算的MATLAB例程,论文复现,附参考文献。GDOP:几何精度因子&CRLB:克拉美罗下界
开发语言·matlab·tdoa·crlb·gdop