sklearn实现数据标准化(Standardization)和归一化(Normalization)

标准化(Standardization)

sklearn的标准化过程,即包括Z-Score标准化,也包括0-1标准化,并且即可以通过实用函数来进行标准化处理,同时也可以利用评估器来执行标准化过程。接下来我们分不同功能以的不同实现形式来进行讨论:

Z-Score标准化的评估器实现方法

python 复制代码
#首先是评估器导入
from sklearn.preprocessing import StandardScaler

#评估器的实例化
scaler = StandardScaler()

#然后导入数据,进行训练,此处也是使用fit函数进行训练:
X = np.arange(15).reshape(5, 3)
scaler.fit(X)

# 查看训练数据各列的标准差
scaler.scale_
# 查看训练数据各列的均值
scaler.mean_
# 查看训练数据各列的方差
scaler.var_
# 总共有效的训练数据条数
scaler.n_samples_seen_

# 利用均值和方差对训练集进行标准化处理
scaler.transform(X)

0-1标准化的评估器实现方法

python 复制代码
from sklearn.preprocessing import MinMaxScaler

#然后导入数据,进行训练
X = np.arange(15).reshape(5, 3)
scaler = MinMaxScaler()
scaler.fit_transform(X)

归一化Normalization

和标准化不同,sklearn中的归一化特指将单个样本(一行数据)放缩为单位范数(1范数或者2范数为单位范数)的过程,归一化也有函数实现和评估器实现两种方法。

此前我们曾解释到关于范数的基本概念,假设向量 x = [ x 1 , x 2 , . . . , x n ] T x = [x_1, x_2, ..., x_n]^T x=[x1,x2,...,xn]T,则向量x的1-范数的基本计算公式为:
∣ ∣ x ∣ ∣ 1 = ∣ x 1 ∣ + ∣ x 2 ∣ + . . . + ∣ x n ∣ ||x||_1 = |x_1|+|x_2|+...+|x_n| ∣∣x∣∣1=∣x1∣+∣x2∣+...+∣xn∣

即各分量的绝对值之和。而向量x的2-范数计算公式为:
∣ ∣ x ∣ ∣ 2 = ( ∣ x 1 ∣ 2 + ∣ x 2 ∣ 2 + . . . + ∣ x n ∣ 2 ) ||x||_2=\sqrt{(|x_1|^2+|x_2|^2+...+|x_n|^2)} ∣∣x∣∣2=(∣x1∣2+∣x2∣2+...+∣xn∣2)

我们可以调用评估器来实现上述过程

python 复制代码
from sklearn.preprocessing import Normalizer

#导入数据,进行训练
X = np.arange(15).reshape(5, 3)

# L2 (默认)
normlize = Normalizer()
normlize.fit_transform(X)

# L1 
normlize = Normalizer(norm='l1')
normlize.fit_transform(X)
相关推荐
疯狂学习GIS几秒前
部署可使用GPU的tensorflow库
python·深度学习·机器学习
只_只7 分钟前
A1012 PAT甲级JAVA题解 The Best Bank
开发语言·python
y102121041 小时前
Python训练营打卡Day34
开发语言·python
编写美好前程1 小时前
Spring Boot 内置工具类汇总与讲解
spring boot·后端·python
2301_776408532 小时前
什么是Django,快速了解Django框架,Django官方文档
python·django
一位搞嵌入式的 genius2 小时前
Django的请求和响应+template模板
python·django
程序员三藏2 小时前
接口自动化测试框架(pytest+allure+aiohttp+ 用例自动生成)
自动化测试·软件测试·python·职场和发展·测试用例·pytest·接口测试
CodeCraft Studio2 小时前
国产化Word处理控件Spire.Doc教程:使用 Python 创建 Word 文档的详细指南
python·c#·word
不争先.2 小时前
Pycharm&&Flask 学习心得:路由(3-4)
后端·python·flask
图学习小组2 小时前
I-CON: A UNIFYING FRAMEWORK FOR REPRESENTATION LEARNING
人工智能·机器学习