sklearn实现数据标准化(Standardization)和归一化(Normalization)

标准化(Standardization)

sklearn的标准化过程,即包括Z-Score标准化,也包括0-1标准化,并且即可以通过实用函数来进行标准化处理,同时也可以利用评估器来执行标准化过程。接下来我们分不同功能以的不同实现形式来进行讨论:

Z-Score标准化的评估器实现方法

python 复制代码
#首先是评估器导入
from sklearn.preprocessing import StandardScaler

#评估器的实例化
scaler = StandardScaler()

#然后导入数据,进行训练,此处也是使用fit函数进行训练:
X = np.arange(15).reshape(5, 3)
scaler.fit(X)

# 查看训练数据各列的标准差
scaler.scale_
# 查看训练数据各列的均值
scaler.mean_
# 查看训练数据各列的方差
scaler.var_
# 总共有效的训练数据条数
scaler.n_samples_seen_

# 利用均值和方差对训练集进行标准化处理
scaler.transform(X)

0-1标准化的评估器实现方法

python 复制代码
from sklearn.preprocessing import MinMaxScaler

#然后导入数据,进行训练
X = np.arange(15).reshape(5, 3)
scaler = MinMaxScaler()
scaler.fit_transform(X)

归一化Normalization

和标准化不同,sklearn中的归一化特指将单个样本(一行数据)放缩为单位范数(1范数或者2范数为单位范数)的过程,归一化也有函数实现和评估器实现两种方法。

此前我们曾解释到关于范数的基本概念,假设向量 x = [ x 1 , x 2 , . . . , x n ] T x = [x_1, x_2, ..., x_n]^T x=[x1,x2,...,xn]T,则向量x的1-范数的基本计算公式为:
∣ ∣ x ∣ ∣ 1 = ∣ x 1 ∣ + ∣ x 2 ∣ + . . . + ∣ x n ∣ ||x||_1 = |x_1|+|x_2|+...+|x_n| ∣∣x∣∣1=∣x1∣+∣x2∣+...+∣xn∣

即各分量的绝对值之和。而向量x的2-范数计算公式为:
∣ ∣ x ∣ ∣ 2 = ( ∣ x 1 ∣ 2 + ∣ x 2 ∣ 2 + . . . + ∣ x n ∣ 2 ) ||x||_2=\sqrt{(|x_1|^2+|x_2|^2+...+|x_n|^2)} ∣∣x∣∣2=(∣x1∣2+∣x2∣2+...+∣xn∣2)

我们可以调用评估器来实现上述过程

python 复制代码
from sklearn.preprocessing import Normalizer

#导入数据,进行训练
X = np.arange(15).reshape(5, 3)

# L2 (默认)
normlize = Normalizer()
normlize.fit_transform(X)

# L1 
normlize = Normalizer(norm='l1')
normlize.fit_transform(X)
相关推荐
智航GIS18 小时前
5.1 if语句基础
开发语言·python
华研前沿标杆游学18 小时前
2026年湖南省工业旅游线路
python
高洁0119 小时前
图神经网络初探(2)
人工智能·深度学习·算法·机器学习·transformer
APIshop19 小时前
深入解析京东API接口:如何高效获取商品详情与SKU信息
python
94621931zyn619 小时前
备份恢复 - Cordova 与 OpenHarmony 混合开发实战
python
PNP Robotics19 小时前
PNP机器人受邀参加英业达具身智能活动
大数据·人工智能·python·学习·机器人
94621931zyn619 小时前
操作历史 - Cordova 与 OpenHarmony 混合开发实战
python
祝余Eleanor19 小时前
Day 51 神经网络调参指南
深度学习·神经网络·机器学习
智算菩萨19 小时前
【Python进阶】搭建AI工程:Python模块、包与版本控制
开发语言·人工智能·python
大学生毕业题目19 小时前
毕业项目推荐:90-基于yolov8/yolov5/yolo11的工程车辆检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·目标检测·cnn·pyqt·工程车辆检测