sklearn实现数据标准化(Standardization)和归一化(Normalization)

标准化(Standardization)

sklearn的标准化过程,即包括Z-Score标准化,也包括0-1标准化,并且即可以通过实用函数来进行标准化处理,同时也可以利用评估器来执行标准化过程。接下来我们分不同功能以的不同实现形式来进行讨论:

Z-Score标准化的评估器实现方法

python 复制代码
#首先是评估器导入
from sklearn.preprocessing import StandardScaler

#评估器的实例化
scaler = StandardScaler()

#然后导入数据,进行训练,此处也是使用fit函数进行训练:
X = np.arange(15).reshape(5, 3)
scaler.fit(X)

# 查看训练数据各列的标准差
scaler.scale_
# 查看训练数据各列的均值
scaler.mean_
# 查看训练数据各列的方差
scaler.var_
# 总共有效的训练数据条数
scaler.n_samples_seen_

# 利用均值和方差对训练集进行标准化处理
scaler.transform(X)

0-1标准化的评估器实现方法

python 复制代码
from sklearn.preprocessing import MinMaxScaler

#然后导入数据,进行训练
X = np.arange(15).reshape(5, 3)
scaler = MinMaxScaler()
scaler.fit_transform(X)

归一化Normalization

和标准化不同,sklearn中的归一化特指将单个样本(一行数据)放缩为单位范数(1范数或者2范数为单位范数)的过程,归一化也有函数实现和评估器实现两种方法。

此前我们曾解释到关于范数的基本概念,假设向量 x = [ x 1 , x 2 , . . . , x n ] T x = [x_1, x_2, ..., x_n]^T x=[x1,x2,...,xn]T,则向量x的1-范数的基本计算公式为:
∣ ∣ x ∣ ∣ 1 = ∣ x 1 ∣ + ∣ x 2 ∣ + . . . + ∣ x n ∣ ||x||_1 = |x_1|+|x_2|+...+|x_n| ∣∣x∣∣1=∣x1∣+∣x2∣+...+∣xn∣

即各分量的绝对值之和。而向量x的2-范数计算公式为:
∣ ∣ x ∣ ∣ 2 = ( ∣ x 1 ∣ 2 + ∣ x 2 ∣ 2 + . . . + ∣ x n ∣ 2 ) ||x||_2=\sqrt{(|x_1|^2+|x_2|^2+...+|x_n|^2)} ∣∣x∣∣2=(∣x1∣2+∣x2∣2+...+∣xn∣2)

我们可以调用评估器来实现上述过程

python 复制代码
from sklearn.preprocessing import Normalizer

#导入数据,进行训练
X = np.arange(15).reshape(5, 3)

# L2 (默认)
normlize = Normalizer()
normlize.fit_transform(X)

# L1 
normlize = Normalizer(norm='l1')
normlize.fit_transform(X)
相关推荐
WWZZ202539 分钟前
快速上手大模型:机器学习3(多元线性回归及梯度、向量化、正规方程)
人工智能·算法·机器学习·机器人·slam·具身感知
应用市场2 小时前
构建自定义命令行工具 - 打造专属指令体
开发语言·windows·python
东方佑2 小时前
从字符串中提取重复子串的Python算法解析
windows·python·算法
Dfreedom.2 小时前
一文掌握Python四大核心数据结构:变量、结构体、类与枚举
开发语言·数据结构·python·变量·数据类型
一半烟火以谋生2 小时前
Python + Pytest + Allure 自动化测试报告教程
开发语言·python·pytest
叶子丶苏3 小时前
第八节_PySide6基本窗口控件_按钮类控件(QAbstractButton)
python·pyqt
晓枫-迷麟4 小时前
【文献阅读】当代MOF与机器学习
人工智能·机器学习
百锦再4 小时前
对前后端分离与前后端不分离(通常指服务端渲染)的架构进行全方位的对比分析
java·开发语言·python·架构·eclipse·php·maven
sensen_kiss4 小时前
INT301 Bio-computation 生物计算(神经网络)Pt.3 梯度下降与Sigmoid激活函数
人工智能·神经网络·机器学习
Shilong Wang4 小时前
MLE, MAP, Full Bayes
人工智能·算法·机器学习