虽然端到端的方法通常使用神经网络或其他深度学习模型,但并不是所有基于经验的方法都不使用神经网络。实际上,一些传统的基于经验的方法可能会结合神经网络或其他机器学习技术,以更好地适应复杂的抓取任务。
具体地说,基于经验的方法可能会使用传统的机械抓取算法,但也可以通过使用机器学习技术来改进和优化这些算法。例如,在基于经验的方法中引入一些学习模块,这些模块可以从经验中学到的数据中提取有用的信息,并用于调整和改善抓取策略。这样的方法被称为"学习增强的基于规则的方法"。
因此,区分这两种方法的关键不在于是否使用神经网络,而在于是否依赖先验知识和手工设计的特征(基于经验的方法),或者是否通过学习从感知输入到抓取输出的映射来解决问题(基于端到端的方法)。在实践中,这两者可能会有一些交叉和融合。