Redis + Lua 实现分布式限流器

文章目录

    • [Redis + Lua 限流实现](#Redis + Lua 限流实现)
      • [1. 导入依赖](#1. 导入依赖)
      • [2. 配置application.properties](#2. 配置application.properties)
      • [3. 配置RedisTemplate实例](#3. 配置RedisTemplate实例)
      • [4. 定义限流类型枚举类](#4. 定义限流类型枚举类)
      • [5. 自定义注解](#5. 自定义注解)
      • [6. 切面代码实现](#6. 切面代码实现)
      • [7. 控制层实现](#7. 控制层实现)
      • [8. 测试](#8. 测试)

相比 Redis事务, Lua脚本的优点:

  • 减少网络开销:使用Lua脚本,无需向Redis 发送多次请求,执行一次即可,减少网络传输
  • 原子操作:Redis 将整个Lua脚本作为一个命令执行,原子,无需担心并发
  • 复用:Lua脚本一旦执行,会永久保存 Redis 中,,其他客户端可复用

Redis + Lua 限流实现

技术栈:自定义注解aopRedis + Lua 实现限流

1. 导入依赖

xml 复制代码
 <dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-data-redis</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-aop</artifactId>
    </dependency>
    <dependency>
        <groupId>org.apache.commons</groupId>
        <artifactId>commons-lang3</artifactId>
    </dependency>
    <dependency>
        <groupId>com.google.guava</groupId>
        <artifactId>guava</artifactId>
        <version>30.1-jre</version>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-test</artifactId>
        <scope>test</scope>
    </dependency>
 </dependencies>

2. 配置application.properties

properties 复制代码
spring.redis.host=10.1.61.121
spring.redis.port=6379
spring.redis.password=123456

3. 配置RedisTemplate实例

java 复制代码
package com.lihw.lihwtestboot.config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.lettuce.LettuceConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.GenericJackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.StringRedisSerializer;
import java.io.Serializable;

@Configuration
public class RedisLimiterHelper {

    @Bean
    public RedisTemplate<String, Serializable> limitRedisTemplate(LettuceConnectionFactory redisConnectionFactory) {
        RedisTemplate<String, Serializable> template = new RedisTemplate<>();
        template.setKeySerializer(new StringRedisSerializer());
        template.setValueSerializer(new GenericJackson2JsonRedisSerializer());
        template.setConnectionFactory(redisConnectionFactory);
        return template;
    }
}

4. 定义限流类型枚举类

java 复制代码
package com.lihw.lihwtestboot.schemas;

/**
 * @explain: 限流类型
 * @author: lihewei
*/
public enum LimitType {
    /**
     * 自定义key
     */
    CUSTOMER,

    /**
     * 请求者IP
     */
    IP;
}

5. 自定义注解

  • period表示请求限制时间段
  • count表示在period这个时间段内允许放行请求的次数。
  • limitType代表限流的类型,可以根据请求的IP自定义key,如果不传limitType属性则默认用方法名作为默认key。
java 复制代码
package com.lihw.lihwtestboot.anno;
import com.lihw.lihwtestboot.schemas.LimitType;
import java.lang.annotation.*;

/**
 * @explain: 自定义限流注解
 * @author: lihewei
*/
@Target({ElementType.METHOD, ElementType.TYPE})//作用于方法上
@Retention(RetentionPolicy.RUNTIME)
@Inherited
@Documented
public @interface Limit {

    /**
     * 名字
     */
    String name() default "";

    /**
     * key
     */
    String key() default "";

    /**
     * Key的前缀
     */
    String prefix() default "";

    /**
     * 给定的时间范围 单位(秒)
     */
    int period();

    /**
     * 一定时间内最多访问次数
     */
    int count();

    /**
     * 限流的类型(用户自定义key 或者 请求ip)
     */
    LimitType limitType() default LimitType.CUSTOMER;
}

6. 切面代码实现

java 复制代码
package com.lihw.lihwtestboot.aop;
import com.google.common.collect.ImmutableList;
import com.lihw.lihwtestboot.anno.Limit;
import com.lihw.lihwtestboot.schemas.LimitType;
import org.apache.commons.lang3.StringUtils;
import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.reflect.MethodSignature;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.script.DefaultRedisScript;
import org.springframework.data.redis.core.script.RedisScript;
import org.springframework.web.context.request.RequestContextHolder;
import org.springframework.web.context.request.ServletRequestAttributes;
import javax.servlet.http.HttpServletRequest;
import java.io.Serializable;
import java.lang.reflect.Method;

/**
 * @explain: 限流切面实现
 * @author: lihewei
*/
@Aspect
@Configuration
public class LimitInterceptor {

    private static final Logger logger = LoggerFactory.getLogger(LimitInterceptor.class);

    private static final String UNKNOWN = "unknown";

    private final RedisTemplate<String, Serializable> limitRedisTemplate;

    @Autowired
    public LimitInterceptor(RedisTemplate<String, Serializable> limitRedisTemplate) {
        this.limitRedisTemplate = limitRedisTemplate;
    }

    /**
     * @author lihw
     * @description 切面
     */
    @Around("execution(public * *(..)) && @annotation(com.lihw.lihwtestboot.anno.Limit)")
    public Object interceptor(ProceedingJoinPoint pjp) {
        MethodSignature signature = (MethodSignature) pjp.getSignature();
        Method method = signature.getMethod();
        Limit limitAnnotation = method.getAnnotation(Limit.class);
        LimitType limitType = limitAnnotation.limitType();
        String name = limitAnnotation.name();
        String key;
        int limitPeriod = limitAnnotation.period();
        int limitCount = limitAnnotation.count();

        /**
         * 根据限流类型获取不同的key ,如果不传我们会以方法名作为key
         */
        switch (limitType) {
            case IP:
                key = getIpAddress();
                break;
            case CUSTOMER:
                key = limitAnnotation.key();
                break;
            default:
                key = StringUtils.upperCase(method.getName());
        }

        ImmutableList<String> keys = ImmutableList.of(StringUtils.join(limitAnnotation.prefix(), key));
        try {
            String luaScript = buildLuaScript();
            RedisScript<Number> redisScript = new DefaultRedisScript<>(luaScript, Number.class);
            Number count = limitRedisTemplate.execute(redisScript, keys, limitCount, limitPeriod);
            logger.info("Access try count is {} for name={} and key = {}", count, name, key);
            if (count != null && count.intValue() <= limitCount) {
                return pjp.proceed();
            } else {
                throw new RuntimeException("You have been dragged into the blacklist");
            }
        } catch (Throwable e) {
            if (e instanceof RuntimeException) {
                throw new RuntimeException(e.getLocalizedMessage());
            }
            throw new RuntimeException("server exception");
        }
    }

    /**
     * @description 编写 redis Lua 限流脚本
     */
    public String buildLuaScript() {
        StringBuilder lua = new StringBuilder();
        lua.append("local c");
        lua.append("\nc = redis.call('get',KEYS[1])");
        // 调用不超过最大值,则直接返回
        lua.append("\nif c and tonumber(c) > tonumber(ARGV[1]) then");
        lua.append("\nreturn c;");
        lua.append("\nend");
        // 执行计算器自加
        lua.append("\nc = redis.call('incr',KEYS[1])");
        lua.append("\nif tonumber(c) == 1 then");
        // 从第一次调用开始限流,设置对应键值的过期
        lua.append("\nredis.call('expire',KEYS[1],ARGV[2])");
        lua.append("\nend");
        lua.append("\nreturn c;");
        return lua.toString();
    }


    /**
     * @description 获取id地址
     */
    public String getIpAddress() {
        HttpServletRequest request = ((ServletRequestAttributes) RequestContextHolder.getRequestAttributes()).getRequest();
        String ip = request.getHeader("x-forwarded-for");
        if (ip == null || ip.length() == 0 || UNKNOWN.equalsIgnoreCase(ip)) {
            ip = request.getHeader("Proxy-Client-IP");
        }
        if (ip == null || ip.length() == 0 || UNKNOWN.equalsIgnoreCase(ip)) {
            ip = request.getHeader("WL-Proxy-Client-IP");
        }
        if (ip == null || ip.length() == 0 || UNKNOWN.equalsIgnoreCase(ip)) {
            ip = request.getRemoteAddr();
        }
        return ip;
    }
}

7. 控制层实现

java 复制代码
package com.lihw.lihwtestboot.controller;

import com.lihw.lihwtestboot.anno.Limit;
import com.lihw.lihwtestboot.schemas.LimitType;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import java.util.concurrent.atomic.AtomicInteger;

@RestController
public class LimiterController {

    private static final AtomicInteger ATOMIC_INTEGER_1 = new AtomicInteger();
    private static final AtomicInteger ATOMIC_INTEGER_2 = new AtomicInteger();
    private static final AtomicInteger ATOMIC_INTEGER_3 = new AtomicInteger();

    @Limit(key = "limitTest", period = 10, count = 3)
    @GetMapping("/limitTest1")
    public int testLimiter1() {

        return ATOMIC_INTEGER_1.incrementAndGet();
    }

    @Limit(key = "customer_limit_test", period = 10, count = 3, limitType = LimitType.CUSTOMER)
    @GetMapping("/limitTest2")
    public int testLimiter2() {

        return ATOMIC_INTEGER_2.incrementAndGet();
    }
    @Limit(key = "ip_limit_test", period = 10, count = 3, limitType = LimitType.IP)
    @GetMapping("/limitTest3")
    public int testLimiter3() {

        return ATOMIC_INTEGER_3.incrementAndGet();
    }
}

8. 测试

10s内连续请求三次以上拒绝请求

相关推荐
Hello.Reader1 小时前
Redis热点数据管理全解析:从MySQL同步到高效缓存的完整解决方案
redis·mysql·缓存
C++忠实粉丝3 小时前
Redis 介绍和安装
数据库·redis·缓存
李洋-蛟龙腾飞公司3 小时前
HarmonyOS Next 应用元服务开发-分布式数据对象迁移数据文件资产迁移
分布式·华为·harmonyos
ClouGence4 小时前
Redis 到 Redis 数据迁移同步
数据库·redis·缓存
苏三说技术4 小时前
Redis 性能优化的18招
数据库·redis·性能优化
Tttian6224 小时前
基于Pycharm与数据库的新闻管理系统(2)Redis
数据库·redis·pycharm
言之。5 小时前
redis延迟队列
redis
技术路上的苦行僧5 小时前
分布式专题(10)之ShardingSphere分库分表实战指南
分布式·shardingsphere·分库分表
hanbarger6 小时前
nosql,Redis,minio,elasticsearch
数据库·redis·nosql
弗罗里达老大爷6 小时前
Redis
数据库·redis·缓存