Flink 1.18.1的基本使用

系统示例应用
shell 复制代码
/usr/local/flink-1.18.1/bin/flink run /usr/local/flies/streaming/SocketWindowWordCount.jar --port 9010
shell 复制代码
nc -l 9010
asd asd sdfsf sdf sdfsdagd sdf

单次统计示例工程
shell 复制代码
cd C:\Dev\IdeaProjects


mvn archetype:generate -DarchetypeGroupId=org.apache.flink -DarchetypeArtifactId=flink-quickstart-java -DarchetypeVersion=1.18.1
shell 复制代码
 Define value for property 'groupId':
 Define value for property 'artifactId':
 Define value for property 'version' 1.0-SNAPSHOT: :
 Define value for property 'package' : :

 com.edu
 flink-example
 1.0.0
 com.edu.flink
java 复制代码
package com.edu.flink;

import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;

import java.time.Duration;


public class WindowWordCount {

    public static void main(String[] args) throws Exception {
        //设置运行时环境
        StreamExecutionEnvironment env =
                StreamExecutionEnvironment.getExecutionEnvironment();

        //设置输入流,并执行数据流的处理和转换
        env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);
        DataStream<Tuple2<String, Integer>> dataStream = env
                .socketTextStream("192.168.18.128", 9000)
                .flatMap(new Splitter())
                .keyBy(0)
                .timeWindow(Time.seconds(5))
                .sum(1);
        dataStream.assignTimestampsAndWatermarks(
                WatermarkStrategy.forBoundedOutOfOrderness(Duration.ofSeconds(3))
        );

        //设置输出流
        dataStream.print();
        //执行程序
        env.execute("Window WordCount");
        System.out.print("finished...");
    }

    public static class Splitter implements FlatMapFunction<String, Tuple2<String,
            Integer>> {
        @Override
        public void flatMap(String sentence, Collector<Tuple2<String, Integer>> out)
                throws Exception {
            for (String word : sentence.split(" ")) {
                out.collect(new Tuple2<String, Integer>(word, 1));
            }
        }
    }

}
相关推荐
Mephisto.java1 分钟前
【大数据学习 | kafka高级部分】kafka的文件存储原理
大数据·sql·oracle·kafka·json
W Y44 分钟前
【架构-37】Spark和Flink
架构·flink·spark
ycsdn101 小时前
Caused by: org.apache.flink.api.common.io.ParseException: Row too short:
大数据·flink
DolphinScheduler社区2 小时前
Apache DolphinScheduler + OceanBase,搭建分布式大数据调度平台的实践
大数据
时差9533 小时前
MapReduce 的 Shuffle 过程
大数据·mapreduce
kakwooi4 小时前
Hadoop---MapReduce(3)
大数据·hadoop·mapreduce
数新网络4 小时前
《深入浅出Apache Spark》系列②:Spark SQL原理精髓全解析
大数据·sql·spark
昨天今天明天好多天10 小时前
【数据仓库】
大数据
油头少年_w10 小时前
大数据导论及分布式存储HadoopHDFS入门
大数据·hadoop·hdfs
Elastic 中国社区官方博客11 小时前
释放专利力量:Patently 如何利用向量搜索和 NLP 简化协作
大数据·数据库·人工智能·elasticsearch·搜索引擎·自然语言处理