Flink 1.18.1的基本使用

系统示例应用
shell 复制代码
/usr/local/flink-1.18.1/bin/flink run /usr/local/flies/streaming/SocketWindowWordCount.jar --port 9010
shell 复制代码
nc -l 9010
asd asd sdfsf sdf sdfsdagd sdf

单次统计示例工程
shell 复制代码
cd C:\Dev\IdeaProjects


mvn archetype:generate -DarchetypeGroupId=org.apache.flink -DarchetypeArtifactId=flink-quickstart-java -DarchetypeVersion=1.18.1
shell 复制代码
 Define value for property 'groupId':
 Define value for property 'artifactId':
 Define value for property 'version' 1.0-SNAPSHOT: :
 Define value for property 'package' : :

 com.edu
 flink-example
 1.0.0
 com.edu.flink
java 复制代码
package com.edu.flink;

import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;

import java.time.Duration;


public class WindowWordCount {

    public static void main(String[] args) throws Exception {
        //设置运行时环境
        StreamExecutionEnvironment env =
                StreamExecutionEnvironment.getExecutionEnvironment();

        //设置输入流,并执行数据流的处理和转换
        env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);
        DataStream<Tuple2<String, Integer>> dataStream = env
                .socketTextStream("192.168.18.128", 9000)
                .flatMap(new Splitter())
                .keyBy(0)
                .timeWindow(Time.seconds(5))
                .sum(1);
        dataStream.assignTimestampsAndWatermarks(
                WatermarkStrategy.forBoundedOutOfOrderness(Duration.ofSeconds(3))
        );

        //设置输出流
        dataStream.print();
        //执行程序
        env.execute("Window WordCount");
        System.out.print("finished...");
    }

    public static class Splitter implements FlatMapFunction<String, Tuple2<String,
            Integer>> {
        @Override
        public void flatMap(String sentence, Collector<Tuple2<String, Integer>> out)
                throws Exception {
            for (String word : sentence.split(" ")) {
                out.collect(new Tuple2<String, Integer>(word, 1));
            }
        }
    }

}
相关推荐
阿里云大数据AI技术1 天前
StarRocks 助力数禾科技构建实时数仓:从数据孤岛到智能决策
大数据
Lx3521 天前
Hadoop数据处理优化:减少Shuffle阶段的性能损耗
大数据·hadoop
武子康2 天前
大数据-99 Spark Streaming 数据源全面总结:原理、应用 文件流、Socket、RDD队列流
大数据·后端·spark
阿里云大数据AI技术2 天前
大数据公有云市场第一,阿里云占比47%!
大数据
Lx3522 天前
Hadoop容错机制深度解析:保障作业稳定运行
大数据·hadoop
T06205143 天前
工具变量-5G试点城市DID数据(2014-2025年
大数据
向往鹰的翱翔3 天前
BKY莱德因:5大黑科技逆转时光
大数据·人工智能·科技·生活·健康医疗
鸿乃江边鸟3 天前
向量化和列式存储
大数据·sql·向量化
IT毕设梦工厂3 天前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata
java水泥工3 天前
基于Echarts+HTML5可视化数据大屏展示-白茶大数据溯源平台V2
大数据·echarts·html5