普通编程,机器学习与深度学习

  • 普通编程:基于人手动设置规则,由输入产生输出
  • 经典机器学习:人手工指定需要的特征,通过一些数学原理对特征与输出的匹配模式进行学习,也就是更新相应的参数,从而使数学表达式能够更好的根据给定的特征得到准确的输出结果。
  • 表示学习:包含深度学习,通过输入由算法生成简单的特征,再逐层生成更加全局 / 抽象的特征,最后,通过一些数学原理对特征与输出的匹配模式进行学习,也就是更新相应的参数,从而使数学表达式能够更好的根据给定的特征得到准确的输出结果。(也就是相较于机器学习而言,该方法能够自行学习特征,不需要人去干预指定特征)
相关推荐
X.AI6665 分钟前
YouTube评论情感分析项目84%正确率:基于BERT的实战复现与原理解析
人工智能·深度学习·bert
艾莉丝努力练剑12 分钟前
【C++:继承】面向对象编程精要:C++继承机制深度解析与最佳实践
开发语言·c++·人工智能·继承·c++进阶
小宁爱Python27 分钟前
从零搭建 RAG 智能问答系统 6:Text2SQL 与工作流实现数据库查询
数据库·人工智能·python·django
Hard_Liquor28 分钟前
Datawhale秋训营-“大运河杯”数据开发应用创新大赛
人工智能·深度学习·算法
运维行者_42 分钟前
AWS云服务故障复盘——从故障中汲取的 IT 运维经验
大数据·linux·运维·服务器·人工智能·云计算·aws
Saniffer_SH1 小时前
搭载高性能GPU的英伟达Nvidia DGX Spark桌面性能小怪兽国内首台开箱视频!
人工智能·深度学习·神经网络·ubuntu·机器学习·语言模型·边缘计算
数字化脑洞实验室1 小时前
AI决策vs人工决策:效率的底层逻辑与选择边界
人工智能
可触的未来,发芽的智生1 小时前
追根索源:换不同的词嵌入(词向量生成方式不同,但词与词关系接近),会出现什么结果?
javascript·人工智能·python·神经网络·自然语言处理
递归不收敛1 小时前
三、检索增强生成(RAG)技术体系
人工智能·笔记·自然语言处理