pytorch——保存‘类别名与类别数量’到权值文件中

前言

不知道大家有没有像我一样,每换一次不一样的模型,就要输入不同的num_classes和name_classes,反正我是很头疼诶,尤其是项目里面不止一个模型的时候,更新的时候看着就很头疼,然后就想着直接输入模型权值文件的path该多好,然后我就搞起来了。

在自己的类中加入想要加入数据信息

python 复制代码
class your_nets(nn.Module):
    def __init__(self, num_classes = 21,name_classes=None):
        super(your_nets, self).__init__()
        self.num_classes = num_classes
        self.name_classes = name_classes

训练过程之保存文件

复制代码
      
python 复制代码
model = your_nets(num_classes=num_classes, name_classes=name_classes)

save_dict = {
                'state_dict': model.state_dict(),
                'num_classes': model.num_classes,
                'name_classes': model.name_classes
            }

torch.save(save_dict, os.path.join(save_dir, "best_epoch_weights.pth"))

使用

python 复制代码
model = get_nets_class(model_path=model_path)


class get_nets_class(object):
    def __init__(self ,**kwargs):
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        load_dict  = torch.load(self.model_path, map_location=device)

        state_dict =load_dict['state_dict']
        num_classes = load_dict['num_classes']
        name_classes = load_dict['name_classes']

        if num_classes is not None and name_classes is not None:
            self.num_classes =num_classes
            self.name_classes = name_classes
            self.net = your_nets(num_classes=self.num_classes,name_classes=name_classe)
            self.net.load_state_dict(state_dict)
        else:
            self.net = your_nets(num_classes=self.num_classes, backbone=self.backbone)
            self.net.load_state_dict(load_dict)
        self.net = self.net.eval()
    
    def predict(self,image,name_classes,object_list):
        #你的预处理操作,没有就忽略
        image_data = preprocess(image)
        with torch.no_grad():
            # 推理
            pr = self.net(images)[0]
            # softmax 得出概率 pr.permute(1, 2, 0), dim=-1为我自己的操作,没有请忽略
            pr = F.softmax(pr.permute(1, 2, 0), dim=-1).cpu().numpy()
        #你的后处理操作,没有就忽略
        pr = postprocess(pr)
        #这一步与object_list有关 object_list是你想要模型去预测的内容
        # 例如你训练了识别cat、dog、pig、person的类别 那么你想只识别人,那么就object_list=['person'] 
        if object_list is not None:
            model_object_list = [name_classes.index(i) for i in object_list if i in name_classes]
            temp_list = [i for i in range(len(name_classes))]
            remove_list = [i for i in temp_list if i not in model_object_list]
            for i in remove_list:
                pr[pr==i] = 0
        retuen pr

我是觉得已经很详细了,大家要是不懂可以再问,我可以慢慢改进,每个人的写法都不一样 。

欢迎大家点赞加收藏哟~

相关推荐
国科安芯12 分钟前
基于AS32A601型MCU芯片的屏幕驱动IC方案的技术研究
服务器·人工智能·单片机·嵌入式硬件·fpga开发
大千AI助手13 分钟前
BPE(Byte Pair Encoding)详解:从基础原理到现代NLP应用
人工智能·自然语言处理·nlp·分词·bpe·大千ai助手·字节对编码
大千AI助手13 分钟前
Megatron-LM张量并行详解:原理、实现与应用
人工智能·大模型·llm·transformer·模型训练·megatron-lm张量并行·大千ai助手
DO_Community16 分钟前
AI 推理 GPU 选型指南:从 A100 到 L40S 再看 RTX 4000 Ada
人工智能·aigc·ai编程·ai推理
iNBC19 分钟前
AI基础概念-第一部分:核心名词与定义(二)
人工智能
XIAO·宝20 分钟前
深度学习------图像分割项目
人工智能·深度学习·图像分割
nvd1120 分钟前
python异步编程 -- 深入理解事件循环event-loop
python
chenchihwen21 分钟前
AI代码开发宝库系列:Text2SQL深度解析基于LangChain构建
人工智能·python·langchain·text2sql·rag
仙人掌_lz33 分钟前
Hybrid OCR-LLM框架用于在大量复杂密集企业级文档信息提取
人工智能·ocr·文档解析
酷柚易汛智推官37 分钟前
AI驱动的智能运维知识平台建设:技术实践与未来展望
运维·人工智能·酷柚易汛