# Android 从问题出发探索KeyEvent分发流程(1) PhoneWindowManager是如何收到事件的
现在回到这篇记录的Step 4开始往下走,探索下事件是怎么跑到Activity里面的
所与标出的类路径的根目录都是frameworks目录
Step 1 InputDispatcher调用 enqueueInboundEventLocked 将封装的KeyEntry 加入队列,同时唤醒Looper
/native/services/inputflinger/dispatcher/InputDispatcher.cpp
cpp
void InputDispatcher::notifyKey(const NotifyKeyArgs* args) {
std::unique_ptr<KeyEntry> newEntry =
std::make_unique<KeyEntry>(args->id, args->eventTime, args->deviceId, args->source,
args->displayId, policyFlags, args->action, flags,
keyCode, args->scanCode, metaState, repeatCount,
args->downTime);
needWake = enqueueInboundEventLocked(std::move(newEntry));
} // release lock
if (needWake) {
mLooper->wake();
}
}
cpp
bool InputDispatcher::enqueueInboundEventLocked(std::unique_ptr<EventEntry> newEntry) {
bool needWake = mInboundQueue.empty();
mInboundQueue.push_back(std::move(newEntry));
EventEntry& entry = *(mInboundQueue.back());
traceInboundQueueLengthLocked();
}
Step 2 唤醒后回调dispatchOnce , 这个任务在Dispatcher的start()函数有定义, 调用路径dispatchOnce -> dispatchOnceInnerLocked 后续根据事件类型调用不同的dispatch函数,这里使用dispatchKeyLocked路径继续分析
/native/services/inputflinger/dispatcher/InputDispatcher.cpp
cpp
void InputDispatcher::dispatchOnce() {
nsecs_t nextWakeupTime = LONG_LONG_MAX;
{ // acquire lock
std::scoped_lock _l(mLock);
mDispatcherIsAlive.notify_all();
// Run a dispatch loop if there are no pending commands.
// The dispatch loop might enqueue commands to run afterwards.
if (!haveCommandsLocked()) {
dispatchOnceInnerLocked(&nextWakeupTime);
}
int timeoutMillis = toMillisecondTimeoutDelay(currentTime, nextWakeupTime);
mLooper->pollOnce(timeoutMillis);
}
/native/services/inputflinger/dispatcher/InputDispatcher.cpp
cpp
void InputDispatcher::dispatchOnceInnerLocked(nsecs_t* nextWakeupTime) {
switch (mPendingEvent->type) {
case EventEntry::Type::KEY: {
done = dispatchKeyLocked(currentTime, keyEntry, &dropReason, nextWakeupTime);
break;
}
case EventEntry::Type::MOTION: {
done = dispatchMotionLocked(currentTime, motionEntry, &dropReason, nextWakeupTime);
break;
}
case EventEntry::Type::SENSOR: {
dispatchSensorLocked(currentTime, sensorEntry, &dropReason, nextWakeupTime);
done = true;
break;
}
}
}
Step 3 判断KeyEvent是否是可重复按键(也就是长按重复上报),然后调用dispatchEventLocked进行真正的转发
/native/services/inputflinger/dispatcher/InputDispatcher.cpp
cpp
bool InputDispatcher::dispatchKeyLocked(nsecs_t currentTime, std::shared_ptr<KeyEntry> entry,
DropReason* dropReason, nsecs_t* nextWakeupTime) {
// Preprocessing.
if (!entry->dispatchInProgress) {
if (entry->repeatCount == 0 && entry->action == AKEY_EVENT_ACTION_DOWN &&
(entry->policyFlags & POLICY_FLAG_TRUSTED) &&
(!(entry->policyFlags & POLICY_FLAG_DISABLE_KEY_REPEAT))) {
if (mKeyRepeatState.lastKeyEntry &&
mKeyRepeatState.lastKeyEntry->keyCode == entry->keyCode &&
mKeyRepeatState.lastKeyEntry->deviceId == entry->deviceId) {
entry->repeatCount = mKeyRepeatState.lastKeyEntry->repeatCount + 1;
resetKeyRepeatLocked();
mKeyRepeatState.nextRepeatTime = LONG_LONG_MAX; // don't generate repeats ourselves
} else {
// Not a repeat. Save key down state in case we do see a repeat later.
resetKeyRepeatLocked();
mKeyRepeatState.nextRepeatTime = entry->eventTime + mConfig.keyRepeatTimeout;
}
mKeyRepeatState.lastKeyEntry = entry;
} else if (entry->action == AKEY_EVENT_ACTION_UP && mKeyRepeatState.lastKeyEntry &&
mKeyRepeatState.lastKeyEntry->deviceId != entry->deviceId) {
// The key on device 'deviceId' is still down, do not stop key repeat
if (DEBUG_INBOUND_EVENT_DETAILS) {
ALOGD("deviceId=%d got KEY_UP as stale", entry->deviceId);
}
} else if (!entry->syntheticRepeat) {
resetKeyRepeatLocked();
}
dispatchEventLocked(currentTime, entry, inputTargets);
return true;
}
Step 4 dispatchEventLocked -> prepareDispatchCycleLocked -> enqueueDispatchEntriesLocked 事件经过这个流程后被加入到待分发队列outboundQueue ,调用startDispatchCycleLocked开始转发
/native/services/inputflinger/dispatcher/InputDispatcher.cpp
cpp
void InputDispatcher::dispatchEventLocked(nsecs_t currentTime,
std::shared_ptr<EventEntry> eventEntry,
const std::vector<InputTarget>& inputTargets) {
for (const InputTarget& inputTarget : inputTargets) {
sp<Connection> connection =
getConnectionLocked(inputTarget.inputChannel->getConnectionToken());
if (connection != nullptr) {
prepareDispatchCycleLocked(currentTime, connection, eventEntry, inputTarget);
}
}
}
}
void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection,
std::shared_ptr<EventEntry> eventEntry,
const InputTarget& inputTarget) {
enqueueDispatchEntriesLocked(currentTime, connection, std::move(splitMotionEntry),
inputTarget);
return;
}
}
// Not splitting. Enqueue dispatch entries for the event as is.
enqueueDispatchEntriesLocked(currentTime, connection, eventEntry, inputTarget);
}
void InputDispatcher::enqueueDispatchEntriesLocked(nsecs_t currentTime,
const sp<Connection>& connection,
std::shared_ptr<EventEntry> eventEntry,
const InputTarget& inputTarget) {
bool wasEmpty = connection->outboundQueue.empty();
// Enqueue dispatch entries for the requested modes.
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_HOVER_EXIT);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_OUTSIDE);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_HOVER_ENTER);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_IS);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER);
// If the outbound queue was previously empty, start the dispatch cycle going.
if (wasEmpty && !connection->outboundQueue.empty()) {
startDispatchCycleLocked(currentTime, connection);
}
}
待转发队列之前为空,新事件加入后不为空就开始调用startDispatchCycleLocked
Step 5 调用connection->inputPublisher.publishKeyEvent分发事件
cpp
void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection) {
while (connection->status == Connection::Status::NORMAL && !connection->outboundQueue.empty()) {
DispatchEntry* dispatchEntry = connection->outboundQueue.front();
dispatchEntry->deliveryTime = currentTime;
const std::chrono::nanoseconds timeout = getDispatchingTimeoutLocked(connection);
dispatchEntry->timeoutTime = currentTime + timeout.count();
// Publish the event.
status_t status;
const EventEntry& eventEntry = *(dispatchEntry->eventEntry);
switch (eventEntry.type) {
case EventEntry::Type::KEY: {
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(eventEntry);
std::array<uint8_t, 32> hmac = getSignature(keyEntry, *dispatchEntry);
// Publish the key event.
status = connection->inputPublisher
.publishKeyEvent(dispatchEntry->seq,
dispatchEntry->resolvedEventId, keyEntry.deviceId,
keyEntry.source, keyEntry.displayId,
std::move(hmac), dispatchEntry->resolvedAction,
dispatchEntry->resolvedFlags, keyEntry.keyCode,
keyEntry.scanCode, keyEntry.metaState,
keyEntry.repeatCount, keyEntry.downTime,
keyEntry.eventTime);
break;
}
}
}
}
从Connection 的构造函数可以看到inputPublisher 实际赋值传入的是InputChannel ,inputChannel 是一个android封装的socketpair ,我们只需要暂时记住这是一个进程间通信的方式,有点类似java中socket使用,分为客户端和服务端,InputDispatcher这一边的逻辑就相当于服务端。 但是我们找遍Connection也没找到InputChannel在哪里,直接搜索也没找到InputChannel.cpp位置,这时候我们猜测下这个类可能定义在别的类中,Connection是从引入的类访问他,所以可以看下Connection引入的类,Connection引入的类很少,很容易找到一个InputTransport,后续函数都在这个类中
Step 6 InputChannel调用sendMessage发送事件
/native/libs/input/InputTransport.cpp
cpp
status_t InputPublisher::publishKeyEvent(uint32_t seq, int32_t eventId, int32_t deviceId,
int32_t source, int32_t displayId,
std::array<uint8_t, 32> hmac, int32_t action,
int32_t flags, int32_t keyCode, int32_t scanCode,
int32_t metaState, int32_t repeatCount, nsecs_t downTime,
nsecs_t eventTime) {
InputMessage msg;
msg.header.type = InputMessage::Type::KEY;
msg.header.seq = seq;
msg.body.key.eventId = eventId;
msg.body.key.deviceId = deviceId;
msg.body.key.source = source;
msg.body.key.displayId = displayId;
msg.body.key.hmac = std::move(hmac);
msg.body.key.action = action;
msg.body.key.flags = flags;
msg.body.key.keyCode = keyCode;
msg.body.key.scanCode = scanCode;
msg.body.key.metaState = metaState;
msg.body.key.repeatCount = repeatCount;
msg.body.key.downTime = downTime;
msg.body.key.eventTime = eventTime;
return mChannel->sendMessage(&msg);
}
/native/libs/input/InputTransport.cpp
cpp
status_t InputChannel::sendMessage(const InputMessage* msg) {
const size_t msgLength = msg->size();
InputMessage cleanMsg;
msg->getSanitizedCopy(&cleanMsg);
ssize_t nWrite;
do {
nWrite = ::send(getFd(), &cleanMsg, msgLength, MSG_DONTWAIT | MSG_NOSIGNAL);
} while (nWrite == -1 && errno == EINTR);
return OK;
}
通过文件描述符向该文件写入数据
Step 7 反向寻找事件监听者
现在事件发送出去了,问题就在于在哪里里接收的,我们就要回头找是谁,先确定这个Fd(文件描述符是多少),回头找到InputDispatcher.cpp /native/services/inputflinger/dispatcher/InputDispatcher.cpp
cpp
Result<std::unique_ptr<InputChannel>> InputDispatcher::createInputChannel(const std::string& name) {
{ // acquire lock
mLooper->addFd(fd, 0, ALOOPER_EVENT_INPUT, new LooperEventCallback(callback), nullptr);
} // release lock
// Wake the looper because some connections have changed.
mLooper->wake();
return clientChannel;
}
这里显示在创建InputChannel时候,他在关心ALOOPER_EVENT_INPUT 这个描述符,也就是输入事件,虽然InputDispatcher有LooperEventCallback但是内部并没有转发逻辑,我们通过命令行搜索 grep -rwn 'ALOOPER_EVENT_INPUT' framework目录 ,发现有不少类使用过,找到一个/base/core/jni/android_view_InputEventReceiver.cpp,这个实际是我们要找到接收者, 他对应的java类是InputEventReceiver.java
/base/core/jni/android_view_InputEventReceiver.cpp
cpp
status_t NativeInputEventReceiver::initialize() {
setFdEvents(ALOOPER_EVENT_INPUT);
return OK;
}
/base/core/java/android/view/InputEventReceiver.java
java
public InputEventReceiver(InputChannel inputChannel, Looper looper) {
if (inputChannel == null) {
throw new IllegalArgumentException("inputChannel must not be null");
}
if (looper == null) {
throw new IllegalArgumentException("looper must not be null");
}
mInputChannel = inputChannel;
mMessageQueue = looper.getQueue();
mReceiverPtr = nativeInit(new WeakReference<InputEventReceiver>(this),
inputChannel, mMessageQueue);
mCloseGuard.open("InputEventReceiver.dispose");
}
他的jni类在初始化对象时候实际做的就是在looper中设置ALOOPER_EVENT_INPUT 事件监听,这样InputTransport中写入事件,这边就收到事件到来被唤醒去处理, 他的实现类很多,其中的WindowInputEventReceiver是我们要找的,他是ViewRootImpl的内部类
Step 8 WindowInputEventReceiver接收并继续处理事件
/base/core/java/android/view/ViewRootImpl.java
java
final class WindowInputEventReceiver extends InputEventReceiver {
@Override
public void onInputEvent(InputEvent event) {
if (processedEvents != null) {
if (processedEvents.isEmpty()) {
// InputEvent consumed by mInputCompatProcessor
finishInputEvent(event, true);
} else {
for (int i = 0; i < processedEvents.size(); i++) {
enqueueInputEvent(
processedEvents.get(i), this,
QueuedInputEvent.FLAG_MODIFIED_FOR_COMPATIBILITY, true);
}
}
} else {
enqueueInputEvent(event, this, 0, true);
}
}
}
void enqueueInputEvent(InputEvent event,
InputEventReceiver receiver, int flags, boolean processImmediately) {
QueuedInputEvent q = obtainQueuedInputEvent(event, receiver, flags);
QueuedInputEvent last = mPendingInputEventTail;
if (last == null) {
mPendingInputEventHead = q;
mPendingInputEventTail = q;
} else {
last.mNext = q;
mPendingInputEventTail = q;
}
if (processImmediately) {
doProcessInputEvents();
} else {
scheduleProcessInputEvents();
}
}
void doProcessInputEvents() {
// Deliver all pending input events in the queue.
while (mPendingInputEventHead != null) {
deliverInputEvent(q);
}
}
上面一套线性调用,获取事件->加入队列->取出事件处理,一直到deliverInputEvent进行分发调用
Step 9 找到目标InputStage,继续传递事件
/base/core/java/android/view/ViewRootImpl.java
java
private void deliverInputEvent(QueuedInputEvent q) {
InputStage stage;
if (q.shouldSendToSynthesizer()) {
stage = mSyntheticInputStage;
} else {
stage = q.shouldSkipIme() ? mFirstPostImeInputStage : mFirstInputStage;
}
if (stage != null) {
handleWindowFocusChanged();
stage.deliver(q);
} else {
finishInputEvent(q);
}
} finally {
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}
}
这里KeyEvent 最后是被ViewPostImeInputStage 处理,可以在setView 函数看到InputStage的创建过程和多个不同InputStage的包含关系
Step 10 ViewPostImeInputStage调用processKeyEvent将事件传递给DecorView
/base/core/java/android/view/ViewRootImpl.java
java
private int processKeyEvent(QueuedInputEvent q) {
final KeyEvent event = (KeyEvent)q.mEvent;
if (mUnhandledKeyManager.preViewDispatch(event)) {
if (ViewDebugManager.DEBUG_ENG) {
Log.v(mTag, "App handle dispatchUnique event = " + event + ", mView = " + mView
+ ", this = " + this);
}
return FINISH_HANDLED;
}
// Deliver the key to the view hierarchy.
if (mView.dispatchKeyEvent(event)) {
if (ViewDebugManager.DEBUG_ENG) {
Log.v(mTag, "App handle key event: event = " + event + ", mView = " + mView
+ ", this = " + this);
}
return FINISH_HANDLED;
}
}
mView 是在setView 赋值,Activity 通过WindowManager 的addView间接调用这个函数,传入的就是View就是DecorView
Step 11 DecorView回调Window.Callback将事件传递到Activity
/base/core/java/com/android/internal/policy/DecorView.java
java
public boolean dispatchKeyEvent(KeyEvent event) {
if (!mWindow.isDestroyed()) {
final Window.Callback cb = mWindow.getCallback();
final boolean handled = cb != null && mFeatureId < 0 ? cb.dispatchKeyEvent(event)
: super.dispatchKeyEvent(event);
if (handled) {
return true;
}
}
return isDown ? mWindow.onKeyDown(mFeatureId, event.getKeyCode(), event)
: mWindow.onKeyUp(mFeatureId, event.getKeyCode(), event);
}
mWindow就是PhoneWindow,callback,Activity实现了这个接口,这个calback就是Activity在attch函数中创建PhoneWindow时候设置的
/base/core/java/android/app/Activity.java
java
final void attach(Context context, ActivityThread aThread,
Instrumentation instr, IBinder token, int ident,
Application application, Intent intent, ActivityInfo info,
CharSequence title, Activity parent, String id,
NonConfigurationInstances lastNonConfigurationInstances,
Configuration config, String referrer, IVoiceInteractor voiceInteractor,
Window window, ActivityConfigCallback activityConfigCallback, IBinder assistToken,
IBinder shareableActivityToken) {
attachBaseContext(context);
mFragments.attachHost(null /*parent*/);
mWindow = new PhoneWindow(this, window, activityConfigCallback);
mWindow.setWindowControllerCallback(mWindowControllerCallback);
mWindow.setCallback(this);
}
至此,Activty如何收到KeyEvent的过程就结束了