机器学习8-决策树

决策树 (Decision Tree)是一种强大且灵活的机器学习算法 ,可用于分类回归 问题。它通过从数据中学习一系列规则来建立模型,这些规则对输入数据进行递归的分割,直到达到某个终止条件

决策树的构建过程:

  1. 选择特征:从所有特征中选择一个最佳的分裂标准,以将数据集分成两个子集。

  2. 分裂数据:使用选定的特征和分裂标准将数据集分成两个子集。这个过程会递归地应用于每个子集,形成树的分支。

  3. 终止条件:在每个节点处,都会检查是否满足某个终止条件,例如节点中的样本数量小于阈值,或者树的深度达到预定的最大深度。

  4. 重复:重复上述步骤,不断分裂和构建树,直到达到终止条件。

决策树的特点:

  1. 可解释性:决策树的规则易于理解,可视化呈现直观的分裂过程,使决策过程变得透明。

  2. 适应性:能够适应不同类型的数据,包括离散型和连续型特征。

  3. 非参数性:不对数据的分布做出具体假设,因此对于不同类型的数据集都具有灵活性。

  4. 特征重要性:决策树可以提供每个特征的重要性,帮助识别影响预测的关键因素。

  5. 处理缺失值:能够处理缺失值,不需要对数据进行特殊的处理。

应用领域:

  • 分类问题:例如,判断邮件是否为垃圾邮件、病患是否患有某种疾病等。
  • 回归问题:预测房价、销售额等连续性输出的问题。
  • 特征选择:通过查看特征的重要性,可以辅助进行特征选择。
  • 异常检测:可用于检测数据中的异常值。

决策树的一个主要缺点是容易过拟合,特别是当树的深度很大时。为了缓解过拟合,可以通过剪枝等技术来调整树的复杂度。

需求:

判断用户是否会购买SUV

代码:

python 复制代码
# Decision Tree Classification

### Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd


### Importing the dataset
dataset = pd.read_csv('Social_Network_Ads.csv')
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values

### Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)


### Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

### Fitting Decision Tree Classification to the Training set
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
classifier.fit(X_train, y_train)

### Predicting the Test set results
y_pred = classifier.predict(X_test)

### Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)

# Visualising the Training set results
from matplotlib.colors import ListedColormap
X_set, y_set = X_train, y_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
                     np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
             alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('Decision Tree Classification (Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()

# Visualising the Test set results
from matplotlib.colors import ListedColormap
X_set, y_set = X_test, y_test
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
                     np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
             alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('Decision Tree Classification (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()

结果:

结论:

预测准确度还是比较高的。

相关推荐
嘀咕博客3 分钟前
Stable Virtual Camera:Stability AI等推出的AI模型 ,2D图像轻松转3D视频
人工智能·3d·音视频·ai工具
北京地铁1号线8 分钟前
机器学习面试题:逻辑回归Logistic Regression(LR)
人工智能·机器学习
云雾J视界11 分钟前
AI赋能与敏捷融合:未来电源项目管理者的角色重塑与技能升级——从华为实战看高技术研发项目的管理变革
人工智能·华为·项目管理·电源研发·敏捷项目·电源项目
canonical_entropy23 分钟前
不同的工作需要不同人格的AI大模型?
人工智能·后端·ai编程
老黄编程26 分钟前
--gpu-architecture <arch> (-arch)
linux·人工智能·机器学习
IT_陈寒33 分钟前
Vite 5.0 终极优化指南:7个配置技巧让你的构建速度提升200%
前端·人工智能·后端
点云SLAM1 小时前
结构光三维重建原理详解(1)
人工智能·数码相机·计算机视觉·三维重建·结构光重建·gray 编码·标定校正
代码AI弗森3 小时前
从 IDE 到 CLI:AI 编程代理工具全景与落地指南(附对比矩阵与脚本化示例)
ide·人工智能·矩阵
xchenhao4 小时前
SciKit-Learn 全面分析分类任务 breast_cancer 数据集
python·机器学习·分类·数据集·scikit-learn·svm
007tg6 小时前
从ChatGPT家长控制功能看AI合规与技术应对策略
人工智能·chatgpt·企业数据安全