Hive-架构与设计

架构与设计


一、背景和起源

大数据存储和处理框架Hadoop提供了对数据的存储、分析、任务调度的处理。其中的MapReduce可以对数据进行处理和分析的,但是MapReduce的编程比较繁琐并且修改不方便,对于一些单次处理和交互式分析非常不便。为了支持对数据仓库中数据的分析、简化用户使用数仓门槛,基于Hadoop的一套数据仓库分析系统Hive应运而生。Hive将结构化数据文件映射为一张数据库表,提供了丰富的SQL查询方式分析存储在Hadoop分布式文件系统的数据。将查询SQL语句转化成MapReduce任务进行执行。

二、框架概述

1.设计特点

  • 支持通过SQL对数据仓库中数据进行访问,比如提取、转化、加工、分析等
  • 支持将不同数据格式添加数据结构
  • 可以直接访问大数据存储系统中的文件,比如HDFS、HBase等

三、架构图

Hive是构建在Hadoop之上,会将SQL转化成MapReduce任务在Hadoop集群进行执行,然后将结果保存在HDFS上,整体架构如上。

1.UI交互层

用户提交查询和其他操作

2.Driver驱动层

  • 接受用户sql语句
  • 调用编译器对Sql语句进行编译
  • 调用执行引擎进行任务的执行

3.Compiler

基于Metastore中元数据对语句进行语义分析和解析查询生成执行计划

4.Metastore

存储数仓中表和分区的元数据,包括列信息、列类型信息、序列化器和反序列化器、存储文件等。

5.Execution Engine

hive生成的执行计划是一个由Stages组成的逻辑DAG图,执行引擎主要是将逻辑DAG图在Hadoop上进行调度和执行,最后转化成MapReduce的map task或reduce task进行运算。

四、执行流程

1.发起请求

UI交互层发起执行请求到Driver驱动层

2.获取执行计划

Driver驱动层将用户请求发送到编译器获取执行计划

3.获取元数据

编译器将sql语句中相关表和分区信息发送到MetaStore获取相关元数据

4.返回元数据

MetaStore返回对应元数据

5.返回执行计划

根据表和分区的元数据对sql的解析和优化,生成逻辑执行计划。该计划是一个DAG图,每个stage对应一个MapReduce的map或者reduce操作。

6.运行执行计划

将执行计划发送到Execution Engine,执行引擎会将逻辑执行计划提交到Hadoop中以MapReduce形式进行执行。

7.运行结果获取

UI交互层获取运行结果。

五、数据模型

hive主要将数据以以下几种数据模型进行组织,分别是DataBase、Table、Partition和Bucket。

1.DataBase数据库

相当于关系型数据中的命名空间,将数据库中数据隔离到不同的数据库模型中。

2.Table表

表是由描述表的元数据和存储的数据组成。数据存储在分布式文件系统中,元数据存储在关系型数据库中。表对应分布式文件系统的一个目录。Hive表分为以下四种:

2.1 MANGED_TABLE 内部表

内部表数据是由hive进行存储和管理的,默认存储位置为/user/hive/warehouse目录。

2.2 EXTERNAL_TABLE 外部表

外部表数据不会存储到hive相关目录下。当删除外部表时,hive只删除表的元数据,不会删除表数据。

2.3 INDEX_TABLE 索引表

索引表是为了提高表某些列的查询速度,包含指定列的值、对应的HDFS文件路径、偏移量的一张表。当查询时可以利用此索引表提高查询速度,避免全表扫描。

2.4 VIRTUAL_VIEW 视图表

视图是一组数据的逻辑表示,是sql语句的结果集

3.Partition分区

分区是根据表的某列值划分为不同分区,分区对应分布式系统中表目录下的一个子目录。分区基于分区键把具有相同分区键值的数据存储在一个子目录下。分区有两种类型:

3.1 静态分区

静态分区的分区数量和分区值都是固定的,新增分区和加载数据到分区时,需要提前指定分区名。

3.2 动态分区

动态分区的分区数量和分区值都是不确定的,会根据数据值自动创建新的分区。

4.Bucket桶

hive还支持将表或者分区中数据更细粒度的划分为桶,每个桶的数据对应分布式系统中子目录下的一个文件。

分桶表创建命令:

java 复制代码
CREATE TABLE table_name

PARTITIONED BY (partition1 data_type, partition2 data_type,....) 

CLUSTERED BY (column_name1, column_name2, ...) 

SORTED BY (column_name [ASC|DESC], ...)] 

INTO num_buckets BUCKETS;

总结

Hive是一个基于Hadoop的数仓分析工具,将分布式系统中的数据映射成结构化数据。提供丰富的SQL查询方式对数仓中的数据进行访问。一般不会存储数据、只会保存元数据到Hive中。Hive根据元数据信息将查询语句转化成执行计划,此执行计划由stage组成的DAG图,调用Hadoop中的MapReduce运行执行计划得到对应结果。


参考链接

1.Apache Hive

2.Hive Home

3.Hive Architecture

相关推荐
美狐美颜sdk32 分钟前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
小雷FansUnion3 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
慌糖4 小时前
微服务介绍
微服务·云原生·架构
June bug5 小时前
【软考中级·软件评测师】下午题·面向对象测试之架构考点全析:分层、分布式、微内核与事件驱动
经验分享·分布式·职场和发展·架构·学习方法·测试·软考
森焱森7 小时前
无人机三轴稳定控制(2)____根据目标俯仰角,实现俯仰稳定化控制,计算出升降舵输出
c语言·单片机·算法·架构·无人机
王小王-1238 小时前
基于Hadoop的京东厨具商品数据分析及商品价格预测系统的设计与实现
hadoop·数据分析·京东厨具·厨具分析·商品分析
go54631584659 小时前
修改Spatial-MLLM项目,使其专注于无人机航拍视频的空间理解
人工智能·算法·机器学习·架构·音视频·无人机
谷新龙00110 小时前
大数据环境搭建指南:基于 Docker 构建 Hadoop、Hive、HBase 等服务
大数据·hadoop·docker
凌辰揽月10 小时前
8分钟讲完 Tomcat架构及工作原理
java·架构·tomcat
绝无仅有11 小时前
对接三方SDK开发过程中的问题排查与解决
后端·面试·架构