随机过程及应用学习笔记(一)概率论(概要)

概率是随机的基础,在【概率论(概要)】这个部分中仅记录学习随机过程及应用的基本定义和结果。

前言

首先,概率论研究的基础是概率空间。概率空间由一个样本空间和一个概率测度组成,样本空间包含了所有可能的结果, 而概率测度则描述了每个结果发生的可能性大小。研究者通过定义适当的概率测度,可以更准确地描述各种随机现象的发生概率。


一、概率空间 ( Ω**,F,P)**

Sample space 样本空间:随机试验的所有可能结果构成的集合称为样本空间,记为 Ω。(注:每个结果需要互斥,所有可能结果必须被穷举)

Set of events 事件集合,是Ω的一些子集构成的集合,记为 F,并且它需要满足以下三点特性(也就是必须是δ-field)

Probability measure 概率测度(或概率),描述一次随机试验中被包含在F 中的所有事件的可能性,记为P

  • 样本点(Sample point):随机试验E的每一个最简单的试验结果,记为
  • 样本空间( Sample space):全体样本点构成的集合,称为样本空间Ω
  • 事件(Event):
  1. 样本空间的子集组成的集类F,称为随机事件体(域)。
  2. 随机事件体F的任意元素A称为随机事件。
  • 样本空间o和F的二元体(Ω,F)称为可测空间。
  • 概率(Probability):每个事件一个可能性的度量值。

1、随机试验

定义:如果一个实验E,满足下列条件:

  • 在相同的条件下可以重复进行;
  • 每次试验的结果不止一个,并且能事先明确试验的所有结果;
  • 一次试验结束之前,不能确定哪一个结果会出现。

称此试验为随机试验。 随机试验(Experiment):结果无法预先确定的试验。 随机试验的结果,称为事件。

2、集论初步

  • 在概率论中,事件和事件的集合起主要作用。
  • 事件的数学理论和集论有密切关系,用集论描述随机过程的事件。

把为了某种目的而研究的对象全体称为集合,简称为集。有某些特定性质的对象的全体,每一个属于这种集的对象,称为集元素。集合用大写字母A、B、C、...表示,元素用小写字母a、b、c、e、w、...表示,一些集组成的集叫类,我们用草写字母表示。

  • 不包含任何元素的集合称为空集
  • 包含所研究问题的全体对象,即:包含所考虑的所有集的所有元素的"最大"集合,称为空间Ω

集合的运算:

3、样本空间、随机事件体

随机试验E的每一个最简单的试验结果,称为样本点,记为。全体样本点构成的集合,称为样本空间,记为Ω。

集合论和概率论的专业术语对应关系如下表所示:

4、概率与概率空间

概率的性质与基本公式:

(6)连续性

5、条件概率

6、乘法公式事件的独立性

随机事件的独立性:

7、全概率公式与贝叶斯公式

二、随机变量及其分布

1、随机变量

2、分布函数

3、离散型随机变量及其分布律

4、连续型随机变量

5、常见的随机变量及其分布

两点分布

两点分布(也称为伯努利分布)是概率论中一种离散概率分布,描述了一个随机变量取两个可能值之一的情况。这两个可能的取值通常被标记为0和1,或者成功和失败。该分布得名的原因是它只涉及到两个点。

两点分布的概率质量函数(PMF)可以表示为:

其中,p 是成功的概率,1−p 是失败的概率。这样的分布通常用于描述一次伯努利试验的结果,其中只有两个可能的结果。

两点分布的期望值(均值)和方差分别为:

  • E(X)=p
  • Var(X)=p(1−p)

其中,X 是随机变量,p 是成功的概率。

二项分布

二项分布(Binomial Distribution)是概率论中一种离散概率分布,描述了在进行一系列独立的伯努利试验中成功的次数。每次试验只有两种可能的结果,通常称为成功(success)和失败(failure)。

假设进行了 n 次独立的伯努利试验,每次试验成功的概率为 p,失败的概率为 1−p。随机变量 �X 表示成功的次数,则 X 的概率质量函数(Probability Mass Function,PMF)为:

其中,(kn​) 表示组合数,即从 n 次试验中选择 k 次成功的组合数。

二项分布的期望值(均值)和方差分别为:

E(X)=np

Var(X)=np(1−p)

这表明在进行多次独立的伯努利试验时,成功的次数的期望值等于每次试验成功的概率乘以试验次数,方差等于期望值乘以失败的概率。

二项分布在概率论和统计学中广泛应用,特别是在描述二元事件的发生次数的情况下,如硬币抛掷、医学研究中的治疗效果、制造业的质检等。

均匀分布

在二维均匀分布中,随机变量(X,Y) 在一个矩形区域内均匀分布。概率密度函数为:

其中,区域的面积决定了概率密度的大小。

均匀分布具有简单且直观的性质,适用于许多实际问题的建模,例如在一定范围内的随机实验或随机变量。均匀分布在统计学、概率论、模拟和随机过程等领域中经常被使用。

高斯分布

高斯分布,也被称为正态分布(Normal Distribution),是概率论和统计学中最为重要的分布之一。它具有许多重要的性质,对于自然界中的许多现象和实验结果都有很好的描述。

高斯分布的概率密度函数(Probability Density Function,PDF)为:

其中,x 是随机变量的取值,μ 是均值(期望值),σ 是标准差。这个分布的图像呈钟形,关于均值对称。

高斯分布的期望值(均值)为 μ,方差为 2σ2。标准差 σ 控制了曲线的宽度,曲线越宽表示数据越分散。

高斯分布在自然界中的许多现象中都能够找到,比如测量误差、身高分布、温度分布等。中心极限定理表明,当独立随机变量的和足够多时,它们的分布趋向于高斯分布。这使得高斯分布在统计学和概率论中被广泛应用,特别是在推断统计、假设检验和机器学习等领域。

三、随机变量的数字特征

1、数字期望

2、方差

3、矩、协方差

4、随机变量数字特征的性质

四、条件数学期望

五、特征函数

1、定义与性质

一般而言,对于随机变量X的分布,大家习惯用概率密度函数来描述,虽然概率密度函数理解起来很直观,但是确实随机变量的分布还有另外的描述方式,比如特征函数。

  • 特征函数的本质是概率密度函数的泰勒展开
  • 每一个级数表示原始概率密度函数的一个特征
  • 如果两个分布的所有特征都相同,那我们就认为这是两个相同的分布
  • 矩是描述概率分布的重要特征,期望、方差等概念都是矩的特殊形态

随机变量X的特征函数:

其中,i是虚数单位,t是任意实数,E[⋅]表示期望。

性质:

  1. 存在性: 对于任何随机变量X,它的特征函数总是存在的。

  2. 唯一性: 不同的随机变量可能具有相同的特征函数,但如果两个随机变量的特征函数在某个范围内相等,则它们在分布上相同。

  3. 特征函数与分布的关系: 如果两个随机变量具有相同的特征函数,则它们具有相同的分布。

  4. 特征函数的对称性: 如果X是一个实随机变量,其特征函数为φ(t),则对于任意实数t,有 ϕ(−t)=ϕ(t)​,其中ϕ(t)​表示φ(t)的共轭复数。

  5. 特征函数的加法性: 如果X和Y是相互独立的随机变量,它们的特征函数分别为φX(t)和φY(t),那么它们的和Z = X + Y 的特征函数为 ϕZ​(t)=ϕX​(t)⋅ϕY​(t)。

  6. 中心极限定理: 如果X1, X2, ..., Xn是独立同分布的随机变量,具有相同的期望μ和方差σ^2,则它们的和标准化后的特征函数在n趋于无穷大时趋近于正态分布的特征函数。

特征函数在概率论和统计学中有广泛的应用,它提供了一种便捷的方式来研究随机变量的性质和相互关系。

针对概率密度函数为f ( x )的连续随机变量X,特征函数写作:

2、多维随机变量的特征函数

  1. 存在性: 对于任何多维随机变量 X,其特征函数总是存在的。

  2. 唯一性: 不同的随机变量可能具有相同的特征函数,但如果两个随机变量的特征函数在某个范围内相等,则它们在分布上相同。

  3. 特征函数与分布的关系: 如果两个多维随机变量具有相同的特征函数,则它们具有相同的分布。

  4. 特征函数的对称性: 如果多维随机变量 X 的特征函数为ϕX​(t),则对于任意实数向量 t,有 ϕX​(−t)=ϕX​(t)​,其中 ϕX​(t)​ 表示特征函数的共轭复数。

  5. 多维随机变量的独立性: 如果多维随机变量 X 和 Y 是相互独立的,它们的特征函数分别为 ϕX​(t) 和 ϕY​(t),那么它们的组合 Z=X+Y 的特征函数为 ϕZ​(t)=ϕX​(t)⋅ϕY​(t)。

六、收敛性与极限定理

1、收敛性

2、大数定理

3、中心极限定理


总结

以上就是今天要讲的内容,仅仅简单介绍了一些概率论的基本概念。

相关推荐
竹言笙熙2 分钟前
代码审计初探
学习·web安全
日记成书4 分钟前
物联网智能项目
物联网·学习
虾球xz32 分钟前
游戏引擎学习第118天
学习·游戏引擎
gz927cool1 小时前
大模型做导师之开源项目学习(lightRAG)
学习·开源·mfc
电棍2332 小时前
verilog笔记
笔记·fpga开发
让我安静会2 小时前
Obsidian·Copilot 插件配置(让AI根据Obsidian笔记内容进行对话)
人工智能·笔记·copilot
世事如云有卷舒2 小时前
FreeRTOS学习笔记
笔记·学习
靡不有初1113 小时前
CCF-CSP第18次认证第一题——报数【两个与string相关的函数的使用】
c++·学习·ccfcsp
gu204 小时前
c#编程:学习Linq,重几个简单示例开始
开发语言·学习·c#·linq
小蒜学长5 小时前
医疗报销系统的设计与实现(代码+数据库+LW)
数据库·spring boot·学习·oracle·课程设计