【北邮鲁鹏老师计算机视觉课程笔记】07 Local feature-Blob detection

【北邮鲁鹏老师计算机视觉课程笔记】07 Local feature-Blob detection

1 实现尺度不变性

不管多近多远,多大多小都能检测出来

找到一个函数,实现尺度的选择特性

2 高斯偏导模版求边缘 做卷积

3 高斯二阶导=拉普拉斯

看哪个信号能产生最大响应

高斯二阶模版检测尺度(用二阶过零点检测边缘)

高斯二阶导有两个参数:方差和窗宽

最后图表示当信号与高斯滤波核能匹配的时候,能产生一个极大值

准备一堆模版上去卷积,看看哪个能产生最大响应

但是随着信号变化发生了信号衰减

高斯偏导核

信号的总面积:随着方差的变大,会越来越小

所以乘以 σ \sigma σ,消去后进行补偿

对于拉普拉斯乘以 σ 2 \sigma^2 σ2

4 怎么进行多尺度检测-尺度与窗宽、高斯方差之间的关系

结论:要有最大响应,

信号宽度与零平面垂直

三种情况

零平面的圆的方程

圆的半径就是尺度

5 不同的尺度去卷积


每一个尺度有一个图像

看具体的一个像素点在图像中的变化

每三个尺度进行比较,只和上下尺度进行比较

如果不做NMS,周边的点也差不多

所以要做NMS,某个点与周边和上下的周边的26个点(同一尺度8个点,上下尺度各9个点)进行比较

6 Harris和Laplacian结合

在Harris角点附近看它有没有Laplacian特性

7 SIFT特征

DOG模版

改进效率问题

①构造高斯差分空间

与原空间只相差一个常数

用一样的卷积核,但是把图像缩小

相关推荐
萤丰信息20 小时前
AI 筑基・生态共荣:智慧园区的价值重构与未来新途
大数据·运维·人工智能·科技·智慧城市·智慧园区
(❁´◡`❁)Jimmy(❁´◡`❁)20 小时前
Exgcd 学习笔记
笔记·学习·算法
傻小胖20 小时前
21.ETH-权益证明-北大肖臻老师客堂笔记
笔记·区块链
盖雅工场20 小时前
排班+成本双管控,餐饮零售精细化运营破局
人工智能·零售餐饮·ai智能排班
神策数据20 小时前
打造 AI Growth Team: 以 Data + AI 重塑品牌零售增长范式
人工智能·零售
2501_9413331020 小时前
数字识别与检测_YOLOv3_C3k2改进模型解析
人工智能·yolo·目标跟踪
逐梦苍穹20 小时前
速通DeepSeek论文mHC:给大模型装上物理阀门的架构革命
人工智能·deepseek·mhc
运维小欣21 小时前
Agentic AI 与 Agentic Ops 驱动,智能运维迈向新高度
运维·人工智能
Honmaple21 小时前
OpenClaw 迁移指南:如何把 AI 助手搬到新电脑
人工智能
wenzhangli721 小时前
Ooder A2UI 第一性原理出发 深度解析核心逻辑
人工智能·开源