【北邮鲁鹏老师计算机视觉课程笔记】07 Local feature-Blob detection

【北邮鲁鹏老师计算机视觉课程笔记】07 Local feature-Blob detection

1 实现尺度不变性

不管多近多远,多大多小都能检测出来

找到一个函数,实现尺度的选择特性

2 高斯偏导模版求边缘 做卷积

3 高斯二阶导=拉普拉斯

看哪个信号能产生最大响应

高斯二阶模版检测尺度(用二阶过零点检测边缘)

高斯二阶导有两个参数:方差和窗宽

最后图表示当信号与高斯滤波核能匹配的时候,能产生一个极大值

准备一堆模版上去卷积,看看哪个能产生最大响应

但是随着信号变化发生了信号衰减

高斯偏导核

信号的总面积:随着方差的变大,会越来越小

所以乘以 σ \sigma σ,消去后进行补偿

对于拉普拉斯乘以 σ 2 \sigma^2 σ2

4 怎么进行多尺度检测-尺度与窗宽、高斯方差之间的关系

结论:要有最大响应,

信号宽度与零平面垂直

三种情况

零平面的圆的方程

圆的半径就是尺度

5 不同的尺度去卷积


每一个尺度有一个图像

看具体的一个像素点在图像中的变化

每三个尺度进行比较,只和上下尺度进行比较

如果不做NMS,周边的点也差不多

所以要做NMS,某个点与周边和上下的周边的26个点(同一尺度8个点,上下尺度各9个点)进行比较

6 Harris和Laplacian结合

在Harris角点附近看它有没有Laplacian特性

7 SIFT特征

DOG模版

改进效率问题

①构造高斯差分空间

与原空间只相差一个常数

用一样的卷积核,但是把图像缩小

相关推荐
whitelbwwww12 小时前
车牌识别--obb识别车框
人工智能
果粒蹬i12 小时前
AI系统故障诊断:模型崩溃、算力瓶颈与数据漂移的识别与解决策略
人工智能
CCPC不拿奖不改名12 小时前
两种完整的 Git 分支协作流程
大数据·人工智能·git·python·elasticsearch·搜索引擎·自然语言处理
Coding茶水间12 小时前
基于深度学习的交通标志检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习
亿信华辰软件12 小时前
构建智慧数据中台,赋能饮料集团全链路数字化转型新引擎
大数据·人工智能·云计算
大模型实验室Lab4AI12 小时前
西北工业大学 StereoMV2D 突破 3D 物体检测深度难题,精度与效率兼得
人工智能·计算机视觉·目标跟踪
旷野说12 小时前
打造 36Gbps 超高速本地机器学习开发环境
人工智能·机器学习
陈天伟教授13 小时前
人工智能应用-机器视觉:绘画大师 04.基于风格迁移的绘画大师
人工智能·神经网络·数码相机·生成对抗网络·dnn
爱打代码的小林13 小时前
opencv基础(轮廓检测、绘制与特征)
人工智能·opencv·计算机视觉
AI浩13 小时前
面向无监督多场景行人重识别的图像-文本知识建模
人工智能·目标检测