【北邮鲁鹏老师计算机视觉课程笔记】07 Local feature-Blob detection

【北邮鲁鹏老师计算机视觉课程笔记】07 Local feature-Blob detection

1 实现尺度不变性

不管多近多远,多大多小都能检测出来

找到一个函数,实现尺度的选择特性

2 高斯偏导模版求边缘 做卷积

3 高斯二阶导=拉普拉斯

看哪个信号能产生最大响应

高斯二阶模版检测尺度(用二阶过零点检测边缘)

高斯二阶导有两个参数:方差和窗宽

最后图表示当信号与高斯滤波核能匹配的时候,能产生一个极大值

准备一堆模版上去卷积,看看哪个能产生最大响应

但是随着信号变化发生了信号衰减

高斯偏导核

信号的总面积:随着方差的变大,会越来越小

所以乘以 σ \sigma σ,消去后进行补偿

对于拉普拉斯乘以 σ 2 \sigma^2 σ2

4 怎么进行多尺度检测-尺度与窗宽、高斯方差之间的关系

结论:要有最大响应,

信号宽度与零平面垂直

三种情况

零平面的圆的方程

圆的半径就是尺度

5 不同的尺度去卷积


每一个尺度有一个图像

看具体的一个像素点在图像中的变化

每三个尺度进行比较,只和上下尺度进行比较

如果不做NMS,周边的点也差不多

所以要做NMS,某个点与周边和上下的周边的26个点(同一尺度8个点,上下尺度各9个点)进行比较

6 Harris和Laplacian结合

在Harris角点附近看它有没有Laplacian特性

7 SIFT特征

DOG模版

改进效率问题

①构造高斯差分空间

与原空间只相差一个常数

用一样的卷积核,但是把图像缩小

相关推荐
齐尹秦4 分钟前
HTML5 Web Workers 学习笔记
笔记·学习
arbboter14 分钟前
【AI插件开发】Notepad++ AI插件开发实践:从Dock窗口集成到功能菜单实现
人工智能·notepad++·动态菜单·notepad++插件开发·dock窗口集成·ai代码辅助工具·ai对话窗口
jndingxin22 分钟前
OpenCV 图形API(或称G-API)(1)
人工智能·opencv·计算机视觉
神马行空1 小时前
一文解读DeepSeek大模型在政府工作中具体的场景应用
人工智能·大模型·数字化转型·deepseek·政务应用
合合技术团队2 小时前
实测对比|法国 AI 独角兽公司发布的“最强 OCR”,实测效果如何?
大数据·人工智能·图像识别
不要影响我叠Q2 小时前
《Fundamentals of Electromigration-Aware IntegratedCircuit Design》笔记
笔记
蒹葭苍苍8732 小时前
LoRA、QLoRA微调与Lama Factory
人工智能·笔记
蹦蹦跳跳真可爱5892 小时前
Python----机器学习(基于PyTorch的线性回归)
人工智能·pytorch·python·机器学习·线性回归
mosquito_lover12 小时前
矿山边坡监测预警系统设计
人工智能·python·深度学习·神经网络·视觉检测
契合qht53_shine2 小时前
OpenCV 从入门到精通(day_03)
人工智能·opencv·计算机视觉