【北邮鲁鹏老师计算机视觉课程笔记】07 Local feature-Blob detection

【北邮鲁鹏老师计算机视觉课程笔记】07 Local feature-Blob detection

1 实现尺度不变性

不管多近多远,多大多小都能检测出来

找到一个函数,实现尺度的选择特性

2 高斯偏导模版求边缘 做卷积

3 高斯二阶导=拉普拉斯

看哪个信号能产生最大响应

高斯二阶模版检测尺度(用二阶过零点检测边缘)

高斯二阶导有两个参数:方差和窗宽

最后图表示当信号与高斯滤波核能匹配的时候,能产生一个极大值

准备一堆模版上去卷积,看看哪个能产生最大响应

但是随着信号变化发生了信号衰减

高斯偏导核

信号的总面积:随着方差的变大,会越来越小

所以乘以 σ \sigma σ,消去后进行补偿

对于拉普拉斯乘以 σ 2 \sigma^2 σ2

4 怎么进行多尺度检测-尺度与窗宽、高斯方差之间的关系

结论:要有最大响应,

信号宽度与零平面垂直

三种情况

零平面的圆的方程

圆的半径就是尺度

5 不同的尺度去卷积


每一个尺度有一个图像

看具体的一个像素点在图像中的变化

每三个尺度进行比较,只和上下尺度进行比较

如果不做NMS,周边的点也差不多

所以要做NMS,某个点与周边和上下的周边的26个点(同一尺度8个点,上下尺度各9个点)进行比较

6 Harris和Laplacian结合

在Harris角点附近看它有没有Laplacian特性

7 SIFT特征

DOG模版

改进效率问题

①构造高斯差分空间

与原空间只相差一个常数

用一样的卷积核,但是把图像缩小

相关推荐
崎岖Qiu18 小时前
【设计模式笔记10】:简单工厂模式示例
java·笔记·设计模式·简单工厂模式
SEO_juper18 小时前
驱动增长,而非浪费:8步整合SEO与PMax,解锁Google AI的隐藏流量
人工智能·搜索引擎·百度·seo·数字营销
IvanCodes18 小时前
一、初识 LangChain:架构、应用与开发环境部署
人工智能·语言模型·langchain·llm
ouliten18 小时前
C++笔记:std::variant
开发语言·c++·笔记
武子康19 小时前
AI研究-117 特斯拉 FSD 视觉解析:多摄像头 - 3D占用网络 - 车机渲染,盲区与低速复杂路况安全指南
人工智能·科技·计算机视觉·3d·视觉检测·特斯拉·model y
Geoking.19 小时前
PyTorch torch.unique() 基础与实战
人工智能·pytorch·python
Fr2ed0m19 小时前
卡尔曼滤波算法原理详解:核心公式、C 语言代码实现及电机控制 / 目标追踪应用
c语言·人工智能·算法
AndrewHZ19 小时前
【图像处理基石】如何在图像中实现光晕的星芒效果?
图像处理·opencv·计算机视觉·cv·图像增强·算法入门·星芒效果
熊猫_豆豆19 小时前
神经网络的科普,功能用途,包含的数学知识
人工智能·深度学习·神经网络
俊俊谢19 小时前
【第一章】金融数据的获取——金融量化学习入门笔记
笔记·python·学习·金融·量化·akshare