pytorch常用激活函数笔记

  1. relu函数:

公式: 深层网络内部激活函数常用这个

python 复制代码
import matplotlib.pyplot as plt

def relu_fun(x):
    if x>=0:
        return x
    else:
        return 0

x = np.random.randn(10)
y = np.arange(10)

plt.plot(y,x)

for i ,t in enumerate(x):
    x[i] = relu_fun(t)
plt.plot(y,x)

2.sigmod函数,深层网络不咋用这个激活函数,因为容易梯度消失,把输入变为范围 0,1之间和tanh曲线挺像,但是tanh函数范围为-1,1之间。

python 复制代码
import numpy as np

def sigmoid(x):
    s = 1 / (1 + np.exp(-x))
    return s
x = np.arange(-100,100).astype(np.float32)/10.0
y = np.arange(-100,100).astype(np.float32)/10.0
plt.plot(y,x)
for i ,t in enumerate(x):
    x[i] = sigmoid(t)
plt.plot(y,x)

3.tanh函数,把输入变为范围 -1,1之间。

python 复制代码
x = np.arange(-100,100).astype(np.float32)/10.0
y = np.tanh(x)
plt.plot(x,y)

4.leak relu函数,leakrelu函数和relu函数的主要区别是,leakrelu 函数保留了小于0的部分的一些影响,只是把这部分性影响减少了。

python 复制代码
fun = nn.LeakyReLU()
x = np.arange(-10000,1000)/100.0
x = torch.from_numpy(x)
x = x.view(-1,1)
t=fun(x)
t=t.numpy()
x= x.numpy()
plt.plot(x,t)
plt.grid(alpha=0.4,linestyle=':')

5.elu函数,α超参数一般取1

python 复制代码
fun = nn.ELU()
x = np.arange(-500,200)/100.0
x = torch.from_numpy(x)
x = x.view(-1,1)
t = fun(x)
x = x.numpy()
t = t.numpy()
plt.plot(x,t)
plt.grid(alpha=0.4,linestyle=':')
相关推荐
我的世界伊若11 小时前
AI重塑IT职场:挑战与机遇并存
人工智能
lapiii35811 小时前
[智能体设计模式] 第4章:反思(Reflection)
人工智能·python·设计模式
时光不去13 小时前
java接口自动化之allure本地生成报告
运维·笔记·自动化
IT_Beijing_BIT13 小时前
tensorflow 图像分类 之四
人工智能·分类·tensorflow
卡奥斯开源社区官方14 小时前
NVIDIA Blackwell架构深度解析:2080亿晶体管如何重构AI算力规则?
人工智能·重构·架构
百锦再15 小时前
第11章 泛型、trait与生命周期
android·网络·人工智能·python·golang·rust·go
杨浦老苏15 小时前
简单直观的笔记管理器Poznote
笔记·docker·群晖
椰壳也可17 小时前
06_作业基于CubeMx实现按键控制LED灯(裸机)(立芯嵌入式笔记)
笔记·stm32·学习
数新网络17 小时前
The Life of a Read/Write Query for Apache Iceberg Tables
人工智能·apache·知识图谱
Yangy_Jiaojiao18 小时前
开源视觉-语言-动作(VLA)机器人项目全景图(截至 2025 年)
人工智能·机器人