5-AM Project: day8 Practical data science with Python 4

Chapter 5 Exploratory Data Analysis and Visualization

  • EDA and visualization libraries in Python
  • Performing EDA with Seaborn and pandas
  • Using EDA Python packages
  • Using visualization best practices
  • Making plots with Plotly

Performing EDA with Seaborn and pandas

Making boxplots and letter-value plots

python 复制代码
import matplotlib.pyplot as plt
df['Minutes'].plot.box()
plt.show()

f = plt.figure(figsize=(5.5, 5.5))  # this changes the size of the image -- more on this is chapter 5
f.patch.set_facecolor('w')  # sets background color behind axis labels
df['Minutes'].plot.box()
plt.tight_layout()  # auto-adjust margins

Making histograms and violin plots

python 复制代码
sns.histplot(x=df['Minutes'], kde=True)

Let's look at a few groups of data at once with a violin plot. Let's first select the top five genres by number of songs and create a separate DataFrame with only this data:

python 复制代码
top_5_genres = df['Genre'].value_counts().index[:5]
top_5_data = data=df[df['Genre'].isin(top_5_genres)]

Making scatter plots with Matplotlib and Seaborn

python 复制代码
plt.scatter(df['Minutes'], df['MB'])

Examining correlations and making correlograms

python 复制代码
sns.pairplot(data=df)

Making missing value plots

python 复制代码
import missingno as msno
msno.matrix(df)

This shows a matrix of non-missing values in gray and missing values in white. Each row is a line across each column. From this, we see that the Composer column has several missing values, but none of the other columns are missing any values. The spark line on the right side shows the total missing values across all columns for each row and shows the maximum and minimum number of complete values for the rows. In our case, 7 means the minimum number of non-missing values in a row is 7, and the maximum number of non-missing values in a row is 8.

Using EDA Python packages

python 复制代码
from pandas_profiling import ProfileReport

report = ProfileReport(df)

report

Using visualization best practices

Saving plots for sharing and reports

相关推荐
youcans_2 分钟前
【DeepSeek论文精读】13. DeepSeek-OCR:上下文光学压缩
论文阅读·人工智能·计算机视觉·ocr·deepseek
m0_650108244 分钟前
【论文精读】Latent-Shift:基于时间偏移模块的高效文本生成视频技术
人工智能·论文精读·文本生成视频·潜在扩散模型·时间偏移模块·高效生成式人工智能
如竟没有火炬18 分钟前
全排列——交换的思想
开发语言·数据结构·python·算法·leetcode·深度优先
浓墨染彩霞23 分钟前
Java----set
java·经验分享·笔记
岁月的眸23 分钟前
【循环神经网络基础】
人工智能·rnn·深度学习
文火冰糖的硅基工坊25 分钟前
[人工智能-大模型-35]:模型层技术 - 大模型的能力与应用场景
人工智能·神经网络·架构·transformer
浮游本尊28 分钟前
React 18.x 学习计划 - 第五天:React状态管理
前端·学习·react.js
机器瓦力35 分钟前
Trae使用:重构一个项目
python·ai编程
baole9631 小时前
YOLOv4简单基础学习
学习·yolo·目标跟踪