5-AM Project: day8 Practical data science with Python 4

Chapter 5 Exploratory Data Analysis and Visualization

  • EDA and visualization libraries in Python
  • Performing EDA with Seaborn and pandas
  • Using EDA Python packages
  • Using visualization best practices
  • Making plots with Plotly

Performing EDA with Seaborn and pandas

Making boxplots and letter-value plots

python 复制代码
import matplotlib.pyplot as plt
df['Minutes'].plot.box()
plt.show()

f = plt.figure(figsize=(5.5, 5.5))  # this changes the size of the image -- more on this is chapter 5
f.patch.set_facecolor('w')  # sets background color behind axis labels
df['Minutes'].plot.box()
plt.tight_layout()  # auto-adjust margins

Making histograms and violin plots

python 复制代码
sns.histplot(x=df['Minutes'], kde=True)

Let's look at a few groups of data at once with a violin plot. Let's first select the top five genres by number of songs and create a separate DataFrame with only this data:

python 复制代码
top_5_genres = df['Genre'].value_counts().index[:5]
top_5_data = data=df[df['Genre'].isin(top_5_genres)]

Making scatter plots with Matplotlib and Seaborn

python 复制代码
plt.scatter(df['Minutes'], df['MB'])

Examining correlations and making correlograms

python 复制代码
sns.pairplot(data=df)

Making missing value plots

python 复制代码
import missingno as msno
msno.matrix(df)

This shows a matrix of non-missing values in gray and missing values in white. Each row is a line across each column. From this, we see that the Composer column has several missing values, but none of the other columns are missing any values. The spark line on the right side shows the total missing values across all columns for each row and shows the maximum and minimum number of complete values for the rows. In our case, 7 means the minimum number of non-missing values in a row is 7, and the maximum number of non-missing values in a row is 8.

Using EDA Python packages

python 复制代码
from pandas_profiling import ProfileReport

report = ProfileReport(df)

report

Using visualization best practices

Saving plots for sharing and reports

相关推荐
编码小哥3 小时前
OpenCV Haar级联分类器:人脸检测入门
人工智能·计算机视觉·目标跟踪
程序员:钧念3 小时前
深度学习与强化学习的区别
人工智能·python·深度学习·算法·transformer·rag
数据与后端架构提升之路3 小时前
TeleTron 源码揭秘:如何用适配器模式“无缝魔改” Megatron-Core?
人工智能·python·适配器模式
Chef_Chen4 小时前
数据科学每日总结--Day44--机器学习
人工智能·机器学习
这张生成的图像能检测吗4 小时前
(论文速读)FR-IQA:面向广义图像质量评价:放松完美参考质量假设
人工智能·计算机视觉·图像增强·图像质量评估指标
hele_two4 小时前
快速幂算法
c++·python·算法
KG_LLM图谱增强大模型5 小时前
本体论与知识图谱:揭示语义技术的核心差异
人工智能·知识图谱·本体论
浩瀚地学5 小时前
【Java】JDK8的一些新特性
java·开发语言·经验分享·笔记·学习
l1t5 小时前
利用DeepSeek将python DLX求解数独程序格式化并改成3.x版本
开发语言·python·算法·数独
JeffDingAI5 小时前
【Datawhale学习笔记】深入大模型架构
笔记·学习