5-AM Project: day8 Practical data science with Python 4

Chapter 5 Exploratory Data Analysis and Visualization

  • EDA and visualization libraries in Python
  • Performing EDA with Seaborn and pandas
  • Using EDA Python packages
  • Using visualization best practices
  • Making plots with Plotly

Performing EDA with Seaborn and pandas

Making boxplots and letter-value plots

python 复制代码
import matplotlib.pyplot as plt
df['Minutes'].plot.box()
plt.show()

f = plt.figure(figsize=(5.5, 5.5))  # this changes the size of the image -- more on this is chapter 5
f.patch.set_facecolor('w')  # sets background color behind axis labels
df['Minutes'].plot.box()
plt.tight_layout()  # auto-adjust margins

Making histograms and violin plots

python 复制代码
sns.histplot(x=df['Minutes'], kde=True)

Let's look at a few groups of data at once with a violin plot. Let's first select the top five genres by number of songs and create a separate DataFrame with only this data:

python 复制代码
top_5_genres = df['Genre'].value_counts().index[:5]
top_5_data = data=df[df['Genre'].isin(top_5_genres)]

Making scatter plots with Matplotlib and Seaborn

python 复制代码
plt.scatter(df['Minutes'], df['MB'])

Examining correlations and making correlograms

python 复制代码
sns.pairplot(data=df)

Making missing value plots

python 复制代码
import missingno as msno
msno.matrix(df)

This shows a matrix of non-missing values in gray and missing values in white. Each row is a line across each column. From this, we see that the Composer column has several missing values, but none of the other columns are missing any values. The spark line on the right side shows the total missing values across all columns for each row and shows the maximum and minimum number of complete values for the rows. In our case, 7 means the minimum number of non-missing values in a row is 7, and the maximum number of non-missing values in a row is 8.

Using EDA Python packages

python 复制代码
from pandas_profiling import ProfileReport

report = ProfileReport(df)

report

Using visualization best practices

Saving plots for sharing and reports

相关推荐
AAD555888993 小时前
数字仪表LCD显示识别与读数:数字0-9、小数点及单位kwh检测识别实战
python
进阶小白猿5 小时前
Java技术八股学习Day36
学习
开源技术5 小时前
Python Pillow 优化,打开和保存速度最快提高14倍
开发语言·python·pillow
Niuguangshuo6 小时前
深入解析Stable Diffusion基石——潜在扩散模型(LDMs)
人工智能·计算机视觉·stable diffusion
迈火6 小时前
SD - Latent - Interposer:解锁Stable Diffusion潜在空间的创意工具
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
wfeqhfxz25887826 小时前
YOLO13-C3k2-GhostDynamicConv烟雾检测算法实现与优化
人工智能·算法·计算机视觉
芝士爱知识a6 小时前
2026年AI面试软件推荐
人工智能·面试·职场和发展·大模型·ai教育·考公·智蛙面试
Li emily6 小时前
解决港股实时行情数据 API 接入难题
人工智能·python·fastapi
Aaron15886 小时前
基于RFSOC的数字射频存储技术应用分析
c语言·人工智能·驱动开发·算法·fpga开发·硬件工程·信号处理
J_Xiong01176 小时前
【Agents篇】04:Agent 的推理能力——思维链与自我反思
人工智能·ai agent·推理