相机图像质量研究(18)常见问题总结:CMOS期间对成像的影响--CFA

系列文章目录

相机图像质量研究(1)Camera成像流程介绍

相机图像质量研究(2)ISP专用平台调优介绍

相机图像质量研究(3)图像质量测试介绍

相机图像质量研究(4)常见问题总结:光学结构对成像的影响--焦距

相机图像质量研究(5)常见问题总结:光学结构对成像的影响--景深

相机图像质量研究(6)常见问题总结:光学结构对成像的影响--对焦距离

相机图像质量研究(7)常见问题总结:光学结构对成像的影响--镜片固化

相机图像质量研究(8)常见问题总结:光学结构对成像的影响--工厂调焦

相机图像质量研究(9)常见问题总结:光学结构对成像的影响--工厂镜头组装

相机图像质量研究(10)常见问题总结:光学结构对成像的影响--光圈

相机图像质量研究(11)常见问题总结:光学结构对成像的影响--像差

相机图像质量研究(12)常见问题总结:光学结构对成像的影响--炫光

相机图像质量研究(13)常见问题总结:光学结构对成像的影响--鬼影

相机图像质量研究(14)常见问题总结:光学结构对成像的影响--伪像

相机图像质量研究(15)常见问题总结:光学结构对成像的影响--暗角

相机图像质量研究(16)常见问题总结:光学结构对成像的影响--IRCUT

相机图像质量研究(17)常见问题总结:CMOS期间对成像的影响--靶面尺寸

相机图像质量研究(18)常见问题总结:CMOS期间对成像的影响--CFA

相机图像质量研究(19)常见问题总结:CMOS期间对成像的影响--Sensor Noise

相机图像质量研究(20)常见问题总结:CMOS期间对成像的影响--全局快门/卷帘快门

相机图像质量研究(21)常见问题总结:CMOS期间对成像的影响--隔行扫描/逐行扫描

相机图像质量研究(22)常见问题总结:CMOS期间对成像的影响--光学串扰

相机图像质量研究(23)常见问题总结:CMOS期间对成像的影响--紫晕

相机图像质量研究(24)常见问题总结:CMOS期间对成像的影响--摩尔纹

相机图像质量研究(25)常见问题总结:CMOS期间对成像的影响--过曝、欠曝

相机图像质量研究(26)常见问题总结:CMOS期间对成像的影响--坏点

相机图像质量研究(27)常见问题总结:补光灯以及遮光罩对成像的影响--遮光罩

相机图像质量研究(28)常见问题总结:补光灯以及遮光罩对成像的影响--补光灯

相机图像质量研究(29)常见问题总结:图像处理对成像的影响--图像插值Demosaic

相机图像质量研究(30)常见问题总结:图像处理对成像的影响--重影

相机图像质量研究(31)常见问题总结:图像处理对成像的影响--图像差

相机图像质量研究(32)常见问题总结:图像处理对成像的影响--振铃效应

相机图像质量研究(33)常见问题总结:图像处理对成像的影响--锯齿

相机图像质量研究(34)常见问题总结:图像处理对成像的影响--拖影

相机图像质量研究(35)常见问题总结:图像处理对成像的影响--运动噪声

相机图像质量研究(36)常见问题总结:编解码对成像的影响--块效应

相机图像质量研究(37)常见问题总结:编解码对成像的影响--条带效应

相机图像质量研究(38)常见问题总结:编解码对成像的影响--呼吸效应

相机图像质量研究(39)常见问题总结:编解码对成像的影响--运动模糊

相机图像质量研究(40)常见问题总结:显示器对成像的影响--画面泛白


目录

系列文章目录

前言

一、CFA的原理

二、CFA对图像的影响


前言

CFA (color filter array)颜色滤波*阵列,*描述图像传感器光感像素的组成形式,不同的阵列形式意味着还原图像的算法不一样。


一、CFA的原理

图像传感器的感光器件本身并不能分开接收图像的不同颜色,起到分离图像不同颜色的作用的功能的器件就是CFA,CFA对光线中的色彩分离后,分离后的单色光再照到感光器件上被转化为数字信号。

CFA能够分离光线颜色的核心原因是其分布不同颜色的滤光片,常见的滤波阵列是RGGB,表示红色,绿色,绿色,蓝色四个阵列为一个单元组成的率光片。

CFA滤光后,单一像素只能知道一种颜色,要能实现一个像素中的三色光都被还原,需要进行插值,能够进行插值的原因是连续性原理,也就是一个像素的周围像素的颜色和它本身往往是连续相近的,所以可以用周围像素颜色推算到它本身的颜色。

二、CFA对图像的影响

CFA影响Demosaic的插值算法,影响颜色和纹理的还原程度。Demosaic也就是插值算法,插值算法的优劣影响图像纹理的精细程度。

另外CFA和IR-CUT由于都是滤光片,因此有的厂商会把两个器件做到一起,叫做RGBIR,也就是滤波阵列的第四个像素可以过滤红外光,然后再后面的软件插值算法中可以定量消除红外光对图像的影响,从而减小器件数量。


总结

本节讲了CFA的原理和CFA对图像的影响。

相关推荐
好奇龙猫16 分钟前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)23 分钟前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan25 分钟前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维31 分钟前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS34 分钟前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd1 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟1 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然2 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~2 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1
岁月宁静2 小时前
当 AI 越来越“聪明”,人类真正的护城河是什么:智商、意识与认知主权
人工智能