PointMixer论文阅读笔记

MLP-mixer是最近很流行的一种网络结构,比起Transformer和CNN的节构笨重,MLP-mixer不仅节构简单,而且在图像识别方面表现优异。但是MLP-mixer在点云识别方面表现欠佳,PointMixer就是在保留了MLP-mixer优点的同时,还可以很好的处理点云问题。PointMixer可以很好的处理intra-set, inter-set, hierarchical-set的点云。PointMixer这偏论文还很好的证明了chanel-mixing MLP是比token-mixing MLP效果更好,对称encoder和decoder结构能够更好的处理点云问题。

为了方便论文阐述,做以下规定:

P是点云的总和

X是点云特性的总和

Y是output特性的总和

pi是i点云的位置

xi是i点云相关的特性

yi是i点云output的特性

Mi是pi点周围邻居点的集合,常表示为Mi = kNN(P, pi)

PointNet++: 使用kNN和最远点sampling算法,使用不对称的encoder和decoder。PointNet++网络不对整个点云直接分析,而是locally的处理然后再整合在一起。

yi = maxpooling(MLP(concat(xi, pi - pj)));j是Mi的成员

PointTransformer: 也是使用了kNN的方法

yi = sum(softmax(MLP(W1(xi) - W2(xj) + δ(pi - pj)))(W3(xj) + δ(pi - pj)))

W为linear transformer metric,δ为positional encoding vector。

MLP-Mixer: MLP-mixer分为token-mix MLP和channel-mix MLP, MLP-Mixer使用K个tokens有C维features, tokens是将图片分割成小块。 第一步是token-mixing MLPs, 第二步时channel-mixing MLP, token mixing是混合空间轴和维度轴到空间轴,channel-mixing是将空间信息转为维度和空间信息。

MLP-Mixer将CNN的两个任务切割开来,不同位置的mix叫token-mixing,同一位置不同channel的mix叫做channel-mixing。

X' = X + (W2ρ(W1(Layernorm(X))T))T

Y = X' + W4ρ(W3Layernorm(X'))

W是MLP,ρ是GELU

token-mix MLPs具有转置同变性,所以点云的输入顺序特别重要。需要在token-mix前再加一层转置不变的网络。

并且MLP-mixer只能处理inter-set的点云,还有很大的提升空间。

https://zhuanlan.zhihu.com/p/372692759

PointMixer:

sj = g2(concat(g1(xj); δ(pi - pj))); j属于Mi, g是channel-mix MLP, δ是positional encoding vector

yi = sum(softmax(sj) * g(xj)); 这里的乘法的element-wise

PointMixer的主要创新点是使用了positional embedding, 使用了softmax,不使用token-mix MLP

为什么不使用token-mix? token-mix MLP具有转置同变性的缺点,而且token-mix只能使用固定数量的输入,但是对于点云来说,neighbor不是固定的,要用聚类算法。

intra-set mixing 使用最传统的kNN

inter-set mixing 使用变种的query-kNN

hierarchical-set mixing 使用变种的hierarchical-kNN

对称性也表现在kNN的集合里面,encoder和decoder的M集是完全颠倒的。

相关推荐
南方的狮子先生5 分钟前
【深度学习】卷积神经网络(CNN)入门:看图识物不再难!
人工智能·笔记·深度学习·神经网络·机器学习·cnn·1024程序员节
蒙奇D索大31 分钟前
【计算机网络】考研408计算机网络:传输介质(导向/非导向)考点梳理
笔记·计算机网络·考研·408·改行学it
ideaout技术团队1 小时前
android集成react native组件踩坑笔记(Activity局部展示RN的组件)
android·javascript·笔记·react native·react.js
一碗绿豆汤1 小时前
机器学习第一阶段
人工智能·笔记·机器学习
YJlio2 小时前
ProcDump 学习笔记(6.14):在调试器中查看转储(WinDbg / Visual Studio 快速上手)
笔记·学习·visual studio
Kay_Liang5 小时前
【Hive 踩坑实录】从元数据库初始化到 HiveServer2 启动的全流程问题解决
大数据·linux·hive·hadoop·笔记·mysql·ubuntu
Larry_Yanan5 小时前
QML学习笔记(四十八)QML与C++交互:QML中可实例化C++对象
c++·笔记·qt·学习·ui·交互
MeowKnight9586 小时前
【数据结构】单链表 练习记录
笔记
Felicity_Gao10 小时前
uni-app VOD 与 COS 选型、开发笔记
前端·笔记·uni-app
Vizio<13 小时前
《基于电阻层析成像(ERT)的机器人皮肤空间灵敏度均衡:通过应变系数分布优化》ICRA 2025 论文解读
论文阅读·机器人·机器人触觉