PointMixer论文阅读笔记

MLP-mixer是最近很流行的一种网络结构,比起Transformer和CNN的节构笨重,MLP-mixer不仅节构简单,而且在图像识别方面表现优异。但是MLP-mixer在点云识别方面表现欠佳,PointMixer就是在保留了MLP-mixer优点的同时,还可以很好的处理点云问题。PointMixer可以很好的处理intra-set, inter-set, hierarchical-set的点云。PointMixer这偏论文还很好的证明了chanel-mixing MLP是比token-mixing MLP效果更好,对称encoder和decoder结构能够更好的处理点云问题。

为了方便论文阐述,做以下规定:

P是点云的总和

X是点云特性的总和

Y是output特性的总和

pi是i点云的位置

xi是i点云相关的特性

yi是i点云output的特性

Mi是pi点周围邻居点的集合,常表示为Mi = kNN(P, pi)

PointNet++: 使用kNN和最远点sampling算法,使用不对称的encoder和decoder。PointNet++网络不对整个点云直接分析,而是locally的处理然后再整合在一起。

yi = maxpooling(MLP(concat(xi, pi - pj)));j是Mi的成员

PointTransformer: 也是使用了kNN的方法

yi = sum(softmax(MLP(W1(xi) - W2(xj) + δ(pi - pj)))(W3(xj) + δ(pi - pj)))

W为linear transformer metric,δ为positional encoding vector。

MLP-Mixer: MLP-mixer分为token-mix MLP和channel-mix MLP, MLP-Mixer使用K个tokens有C维features, tokens是将图片分割成小块。 第一步是token-mixing MLPs, 第二步时channel-mixing MLP, token mixing是混合空间轴和维度轴到空间轴,channel-mixing是将空间信息转为维度和空间信息。

MLP-Mixer将CNN的两个任务切割开来,不同位置的mix叫token-mixing,同一位置不同channel的mix叫做channel-mixing。

X' = X + (W2ρ(W1(Layernorm(X))T))T

Y = X' + W4ρ(W3Layernorm(X'))

W是MLP,ρ是GELU

token-mix MLPs具有转置同变性,所以点云的输入顺序特别重要。需要在token-mix前再加一层转置不变的网络。

并且MLP-mixer只能处理inter-set的点云,还有很大的提升空间。

https://zhuanlan.zhihu.com/p/372692759

PointMixer:

sj = g2(concat(g1(xj); δ(pi - pj))); j属于Mi, g是channel-mix MLP, δ是positional encoding vector

yi = sum(softmax(sj) * g(xj)); 这里的乘法的element-wise

PointMixer的主要创新点是使用了positional embedding, 使用了softmax,不使用token-mix MLP

为什么不使用token-mix? token-mix MLP具有转置同变性的缺点,而且token-mix只能使用固定数量的输入,但是对于点云来说,neighbor不是固定的,要用聚类算法。

intra-set mixing 使用最传统的kNN

inter-set mixing 使用变种的query-kNN

hierarchical-set mixing 使用变种的hierarchical-kNN

对称性也表现在kNN的集合里面,encoder和decoder的M集是完全颠倒的。

相关推荐
雾里看山2 小时前
【MySQL】 库的操作
android·数据库·笔记·mysql
cdut_suye3 小时前
踏浪而行,2024年技术创作的星光轨迹
经验分享·笔记·学习方法·热榜·博客之星·学习历程·回顾2024
雁于飞5 小时前
c语言贪吃蛇(极简版,基本能玩)
c语言·开发语言·笔记·学习·其他·课程设计·大作业
梅见十柒5 小时前
计算机系统原理:一些断言
经验分享·笔记
青椒大仙KI116 小时前
25/1/21 算法笔记<ROS2> 服务通信,参数
笔记
m0_743106467 小时前
【论文笔记】MV-DUSt3R+:两秒重建一个3D场景
论文阅读·深度学习·计算机视觉·3d·几何学
m0_743106467 小时前
【论文笔记】TranSplat:深度refine的camera-required可泛化稀疏方法
论文阅读·深度学习·计算机视觉·3d·几何学
bohu8314 小时前
OpenCV笔记3-图像修复
笔记·opencv·图像修复·亮度增强·图片磨皮
doubt。15 小时前
【BUUCTF】[RCTF2015]EasySQL1
网络·数据库·笔记·mysql·安全·web安全
Zelotz15 小时前
线段树与矩阵
笔记