从零开始快速构建自己的Flink应用

本文介绍如何在 mac 下快速构建属于自己的 Flink 应用。

在 mac 上使用homebrew安装 flink:

bash 复制代码
brew install apache-flink

查看安装的位置:

bash 复制代码
brew info apache-flink

进入安装目录,启动 flink 集群:

bash 复制代码
cd /usr/local/Cellar/apache-flink/1.18.0
./libexec/bin/start-cluster.sh

进入 web 页面:http://localhost:8081/

2. 构建项目

基于模板直接构建一个项目:

bash 复制代码
curl https://flink.apache.org/q/quickstart.sh | bash -s 1.18.0
cd quickstart

在项目的 DataStreamJob 类实现如下计数的功能:

java 复制代码
package org.myorg.quickstart;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

public class DataStreamJob {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        env.socketTextStream("127.0.0.1", 9000)
        .flatMap(new LineSplitter())
        .keyBy(0)
        .sum(1)
        .print();

        env.execute("WordCount");
    }

    public static final class LineSplitter implements FlatMapFunction<String, Tuple2<String, Integer>> {
        @Override
        public void flatMap(String s, Collector<Tuple2<String, Integer>> collector) {
            String[] tokens = s.toLowerCase().split("\\W+");

            for (String token : tokens) {
                if (token.length() > 0) {
                    collector.collect(new Tuple2<>(token, 1));
                }
            }
        }
    }
}

在上面的例子中,我们使用 DataStream API 构建了一个 Flink 应用,数据源(source)为本地的 socket 9000 端口,经过 flatMap、keyBy、sum 三个转换操作之后,最后打印到标准输出流。整体流程如下图:

3. 运行

启动 socket 连接,监听 9000 端口:

yaml 复制代码
nc -l 9000

打包,上传(可以使用 Web UI 界面上传,也可以使用命令行上传)。

上传后,就可以在 WebUI 看到正在运行的 job 了。

此时通过在 socket 输入内容,

就可以在 task manager 的 stdout 看到打印结果了。

4. 总结

本文从零开始在本地构建运行了一个 Flink 应用,包括 Flink 集群的安装、Flink 应用的构建,以及 Flink 应用的运行。

相关推荐
君不见,青丝成雪2 小时前
Flink双流join
大数据·数据仓库·flink
好好先森&4 小时前
Linux系统:C语言进程间通信信号(Signal)
大数据
EkihzniY4 小时前
结构化 OCR 技术:破解各类检测报告信息提取难题
大数据·ocr
吱吱企业安全通讯软件4 小时前
吱吱企业通讯软件保证内部通讯安全,搭建数字安全体系
大数据·网络·人工智能·安全·信息与通信·吱吱办公通讯
云手机掌柜4 小时前
Tumblr长文运营:亚矩阵云手机助力多账号轮询与关键词布局系统
大数据·服务器·tcp/ip·矩阵·流量运营·虚幻·云手机
拓端研究室7 小时前
专题:2025全球消费趋势与中国市场洞察报告|附300+份报告PDF、原数据表汇总下载
大数据·信息可视化·pdf
阿里云大数据AI技术8 小时前
MaxCompute聚簇优化推荐功能发布,单日节省2PB Shuffle、7000+CU!
大数据
Lx35212 小时前
Hadoop小文件处理难题:合并与优化的最佳实践
大数据·hadoop
激昂网络12 小时前
android kernel代码 common-android13-5.15 下载 编译
android·大数据·elasticsearch