从零开始快速构建自己的Flink应用

本文介绍如何在 mac 下快速构建属于自己的 Flink 应用。

在 mac 上使用homebrew安装 flink:

bash 复制代码
brew install apache-flink

查看安装的位置:

bash 复制代码
brew info apache-flink

进入安装目录,启动 flink 集群:

bash 复制代码
cd /usr/local/Cellar/apache-flink/1.18.0
./libexec/bin/start-cluster.sh

进入 web 页面:http://localhost:8081/

2. 构建项目

基于模板直接构建一个项目:

bash 复制代码
curl https://flink.apache.org/q/quickstart.sh | bash -s 1.18.0
cd quickstart

在项目的 DataStreamJob 类实现如下计数的功能:

java 复制代码
package org.myorg.quickstart;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

public class DataStreamJob {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        env.socketTextStream("127.0.0.1", 9000)
        .flatMap(new LineSplitter())
        .keyBy(0)
        .sum(1)
        .print();

        env.execute("WordCount");
    }

    public static final class LineSplitter implements FlatMapFunction<String, Tuple2<String, Integer>> {
        @Override
        public void flatMap(String s, Collector<Tuple2<String, Integer>> collector) {
            String[] tokens = s.toLowerCase().split("\\W+");

            for (String token : tokens) {
                if (token.length() > 0) {
                    collector.collect(new Tuple2<>(token, 1));
                }
            }
        }
    }
}

在上面的例子中,我们使用 DataStream API 构建了一个 Flink 应用,数据源(source)为本地的 socket 9000 端口,经过 flatMap、keyBy、sum 三个转换操作之后,最后打印到标准输出流。整体流程如下图:

3. 运行

启动 socket 连接,监听 9000 端口:

yaml 复制代码
nc -l 9000

打包,上传(可以使用 Web UI 界面上传,也可以使用命令行上传)。

上传后,就可以在 WebUI 看到正在运行的 job 了。

此时通过在 socket 输入内容,

就可以在 task manager 的 stdout 看到打印结果了。

4. 总结

本文从零开始在本地构建运行了一个 Flink 应用,包括 Flink 集群的安装、Flink 应用的构建,以及 Flink 应用的运行。

相关推荐
Aloudata14 分钟前
NoETL自动化指标平台为数据分析提质增效,驱动业务决策
大数据·数据分析·指标平台·指标体系
2401_883041084 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
青云交4 小时前
大数据新视界 -- 大数据大厂之 Impala 性能优化:融合机器学习的未来之路(上 (2-1))(11/30)
大数据·计算资源·应用案例·数据交互·impala 性能优化·机器学习融合·行业拓展
Json_181790144807 小时前
An In-depth Look into the 1688 Product Details Data API Interface
大数据·json
Qspace丨轻空间9 小时前
气膜场馆:推动体育文化旅游创新发展的关键力量—轻空间
大数据·人工智能·安全·生活·娱乐
Elastic 中国社区官方博客10 小时前
如何将数据从 AWS S3 导入到 Elastic Cloud - 第 3 部分:Elastic S3 连接器
大数据·elasticsearch·搜索引擎·云计算·全文检索·可用性测试·aws
Aloudata11 小时前
从Apache Atlas到Aloudata BIG,数据血缘解析有何改变?
大数据·apache·数据血缘·主动元数据·数据链路
水豚AI课代表11 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
拓端研究室TRL14 小时前
【梯度提升专题】XGBoost、Adaboost、CatBoost预测合集:抗乳腺癌药物优化、信贷风控、比特币应用|附数据代码...
大数据
黄焖鸡能干四碗14 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书