从零开始快速构建自己的Flink应用

本文介绍如何在 mac 下快速构建属于自己的 Flink 应用。

在 mac 上使用homebrew安装 flink:

bash 复制代码
brew install apache-flink

查看安装的位置:

bash 复制代码
brew info apache-flink

进入安装目录,启动 flink 集群:

bash 复制代码
cd /usr/local/Cellar/apache-flink/1.18.0
./libexec/bin/start-cluster.sh

进入 web 页面:http://localhost:8081/

2. 构建项目

基于模板直接构建一个项目:

bash 复制代码
curl https://flink.apache.org/q/quickstart.sh | bash -s 1.18.0
cd quickstart

在项目的 DataStreamJob 类实现如下计数的功能:

java 复制代码
package org.myorg.quickstart;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

public class DataStreamJob {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        env.socketTextStream("127.0.0.1", 9000)
        .flatMap(new LineSplitter())
        .keyBy(0)
        .sum(1)
        .print();

        env.execute("WordCount");
    }

    public static final class LineSplitter implements FlatMapFunction<String, Tuple2<String, Integer>> {
        @Override
        public void flatMap(String s, Collector<Tuple2<String, Integer>> collector) {
            String[] tokens = s.toLowerCase().split("\\W+");

            for (String token : tokens) {
                if (token.length() > 0) {
                    collector.collect(new Tuple2<>(token, 1));
                }
            }
        }
    }
}

在上面的例子中,我们使用 DataStream API 构建了一个 Flink 应用,数据源(source)为本地的 socket 9000 端口,经过 flatMap、keyBy、sum 三个转换操作之后,最后打印到标准输出流。整体流程如下图:

3. 运行

启动 socket 连接,监听 9000 端口:

yaml 复制代码
nc -l 9000

打包,上传(可以使用 Web UI 界面上传,也可以使用命令行上传)。

上传后,就可以在 WebUI 看到正在运行的 job 了。

此时通过在 socket 输入内容,

就可以在 task manager 的 stdout 看到打印结果了。

4. 总结

本文从零开始在本地构建运行了一个 Flink 应用,包括 Flink 集群的安装、Flink 应用的构建,以及 Flink 应用的运行。

相关推荐
Aloudata26 分钟前
NoETL 自动化指标平台如何保障数据质量和口径一致性?
大数据·数据分析·数据质量·noetl
SelectDB技术团队1 小时前
Apache Doris 创始人:何为“现代化”的数据仓库?
大数据·数据库·数据仓库·数据分析·doris
原点安全3 小时前
“鼎和财险一体化数据安全管控实践”入选信通院金融领域优秀案例
大数据·人工智能·金融
Apache Flink3 小时前
探索Flink动态CEP:杭州银行的实战案例
大数据·单例模式·flink
AdSet聚合广告3 小时前
穿山甲等广告联盟依据哪些维度给APP、小程序结算广告变现收益
大数据·小程序
赛逸展张胜5 小时前
CES Asia是一个关于什么的展会?
大数据·人工智能·科技
树莓集团5 小时前
树莓集团:数字化产业园建设运营推动数字经济
大数据·云计算·媒体
努力的布布5 小时前
Elasticsearch-模糊查询
大数据·elasticsearch·搜索引擎
得谷养人5 小时前
flink-1.16 table sql 消费 kafka 数据,指定时间戳位置消费数据报错:Invalid negative offset 问题解决
sql·flink·kafka
TDengine (老段)5 小时前
两分钟掌握 TDengine 全部写入方式
大数据·数据库·时序数据库·tdengine·涛思数据