Bert基础(二)--多头注意力

多头注意力

顾名思义,多头注意力是指我们可以使用多个注意力头,而不是只用一个。也就是说,我们可以应用在上篇中学习的计算注意力矩阵Z的方法,来求得多个注意力矩阵。让我们通过一个例子来理解多头注意力层的作用。以All is well这句话为例,假设我们需要计算well的自注意力值。在计算相似度分数后,我们得到图所示的结果。

从图中可以看出,well的自注意力值是分数加权的值向量之和,并且它实际上是由All主导的。也就是说,将All的值向量乘以0.6,而well的值向量只乘以了0.4。这意味着 z w e l l z_{well} zwell将包含60%的All的值向量,而well的值向量只有40%。

这只有在词义含糊不清的情况下才有用。以下句为例:A dog ate the food because it was hungry(一只狗吃了食物,因为它很饿)假设我们需要计算it的自注意力值。在计算相似度分数后,我们得到下图所示的结果。

从图中可以看出,it的自注意力值正是dog的值向量。在这里,单词it的自注意力值被dog所控制。这是正确的,因为it的含义模糊,它指的既可能是dog,也可能是food。

如果某个词实际上由其他词的值向量控制,而这个词的含义又是模糊的,那么这种控制关系是有用的;否则,这种控制关系反而会造成误解。为了确保结果准确,我们不能依赖单一的注意力矩阵,而应该计算多个注意力矩阵,并将其结果串联起来。使用多头注意力的逻辑是这样的:使用多个注意力矩阵,而非单一的注意力矩阵,可以提高注意力矩阵的准确性。我们将进一步探讨这一点。

假设要计算两个注意力矩阵 Z 1 Z_1 Z1和 Z 2 Z_2 Z2。首先,计算注意力矩阵 Z 1 Z_1 Z1。

我们已经知道,为了计算注意力矩阵,需要创建三个新的矩阵,分别为查询矩阵、键矩阵和值矩阵。为了创建查询矩阵 Q 1 Q_1 Q1、键矩阵 K 1 K_1 K1和值矩阵 V 1 V_1 V1,我们引入三个新的权重矩阵,称为 W 1 Q , W 1 K , W 1 V W_1^Q , W_1^K, W_1^V W1Q,W1K,W1V。用矩阵X分别乘以矩阵 W 1 Q , W 1 K , W 1 V W_1^Q , W_1^K, W_1^V W1Q,W1K,W1V,就可以依次创建出查询矩阵、键矩阵和值矩阵。

基于以上内容,注意力矩阵 Z 1 Z_1 Z1可按以下公式计算得出。
Z 1 = s o f t m a x ( Q 1 ⋅ K 1 T d k ) V 1 Z_1 = softmax(\frac{Q_1·K_1^T}{\sqrt{d_k}})V_1 Z1=softmax(dk Q1⋅K1T)V1

接下来计算第二个注意力矩阵 Z 2 Z_2 Z2。

为了计算注意力矩阵 Z 2 Z_2 Z2,我们创建了另一组矩阵:查询矩阵 Q 2 Q_2 Q2、键矩阵 K 2 K_2 K2和值矩阵 V 2 V_2 V2,并引入了三个新的权重矩阵,即 W 2 Q , W 2 K , W 2 V W_2^Q , W_2^K, W_2^V W2Q,W2K,W2V。用矩阵 X X X分别乘以矩阵 W 2 Q , W 2 K , W 2 V W_2^Q , W_2^K, W_2^V W2Q,W2K,W2V,就可以依次得出对应的查询矩阵、键矩阵和值矩阵。注意力矩阵 Z 2 Z_2 Z2可按以下公式计算得出。

Z 2 = s o f t m a x ( Q 2 ⋅ K 2 T d k ) V 2 Z_2 = softmax(\frac{Q_2·K_2^T}{\sqrt{d_k}})V_2 Z2=softmax(dk Q2⋅K2T)V2

同理,可以计算出 h h h个注意力矩阵。假设我们有8个注意力矩阵,即 Z 1 Z_1 Z1到 Z 8 Z_8 Z8,那么可以直接将所有的注意力头(注意力矩阵)串联起来,并将结果乘以一个新的权重矩阵 W 0 W_0 W0,从而得出最终的注意力矩阵,公式如下所示。

现在,我们已经了解了多头注意力层的工作原理。下篇将介绍另一个有趣的概念,即位置编码(positional encoding)。

相关推荐
哈__几秒前
CANN: AI 生态的异构计算核心,从架构到实战全解析
人工智能·架构
B站_计算机毕业设计之家1 分钟前
豆瓣电影推荐系统 | Python Django Echarts构建个性化影视推荐平台 大数据 毕业设计源码 (建议收藏)✅
大数据·python·机器学习·django·毕业设计·echarts·推荐算法
熊猫钓鱼>_>4 分钟前
移动端开发技术选型报告:三足鼎立时代的开发者指南(2026年2月)
android·人工智能·ios·app·鸿蒙·cpu·移动端
想你依然心痛7 分钟前
ModelEngine·AI 应用开发实战:从智能体到可视化编排的全栈实践
人工智能·智能体·ai应用·modelengine
KIKIiiiiiiii8 分钟前
微信个人号API二次开发中的解决经验
java·人工智能·python·微信
哈哈你是真的厉害11 分钟前
解构 AIGC 的“核动力”引擎:华为 CANN 如何撑起万亿参数的大模型时代
人工智能·aigc·cann
Ekehlaft12 分钟前
这款国产 AI,让 Python 小白也能玩转编程
开发语言·人工智能·python·ai·aipy
哈__13 分钟前
CANN多模型并发部署方案
人工智能·pytorch
予枫的编程笔记16 分钟前
【Linux入门篇】Linux运维必学:Vim核心操作详解,告别编辑器依赖
linux·人工智能·linux运维·vim操作教程·程序员工具·编辑器技巧·新手学vim
慢半拍iii16 分钟前
对比分析:ops-nn与传统深度学习框架算子的差异
人工智能·深度学习·ai·cann