BERT架构简介

一、BERT模型架构

BERT沿用原始Transformer模型中的编码器层,具有编码器的堆叠。但BERT没有使用解码器层,因此没有掩码多头注意力子层。(BERT的设计者认为,对序列后续部分进行掩码会阻碍注意力过程)。于是,BERT引入了双向注意力机制 ,即一个注意力头从左到右,另一个注意力头从右到左注意所有单词。

图1 BERT模型架构

二、BERT模型训练

BERT的训练过程分为两项任务:掩码语言建模 (Masked Language Modeling,MLM)和下一句预测(Next Sentence Prediction, NSP)

2.1 掩码语言建模

BERT对句子进行双向分析,随机对句子中的某一个单词进行随机掩码。

复制代码
原句:The cat sat on it because it was a nice rug.
Transformer:The cat sat on it <masked sequence>.
BERT:The cat sat on it [MASK] it was a nice rug.

上述掩码过程只是一个注意力子层的效果,当使用多个注意力子层时,就可以看到整个序列,运行注意力过程,然后观测被掩码的词元。

2.2 下一句预测

在这个过程中会添加两个新的词元:

  • CLS\]词元:二分类词元,添加到第一个句子的开头,用于预测第二个句子是否跟随第一个句子。


图2 输入嵌入过程

2.3 总结

  • 使用WordPiece对句子进行词元化
  • 使用[MASK]词元随机替换句子中的单词
  • 在序列的开头插入[CLS]分类词元
  • 在序列的两个句子结尾插入[SEP]词元
  • 句子嵌入是在词嵌入的基础上添加的,因此句子A和句子B具有不同的嵌入值
  • 位置编码采用了可学习方法,而没有采用原始Transformer中的正弦-余弦位置编码方法

参考文献

1\] 丹尼斯·罗斯曼.《基于GPT-3、ChatGPT、GPT-4等Transformer架构的自然语言处理》 \[M\]. 北京: 清华大学出版社, 2024

相关推荐
Gofarlic_OMS2 分钟前
如何将MATLAB网络并发许可证闲置率降至10%以下
大数据·运维·服务器·开发语言·人工智能·matlab·制造
行业探路者5 分钟前
提升产品宣传效果的二维码应用新趋势
大数据·人工智能·学习·二维码·产品介绍
点云SLAM7 分钟前
Appearing 英文单词学习
人工智能·英文单词学习·雅思备考·呈现 / 表现·出现 / 显现·appearing·正在出现
一个会的不多的人22 分钟前
人工智能基础篇:概念性名词浅谈(第二十九讲)
人工智能·制造·数字化转型
edisao27 分钟前
四。SpaceX、网络化与未来的跨越:低成本、高频次的真正威胁
大数据·开发语言·人工智能·科技·php
万行28 分钟前
差速两轮机器人位移与航向角增量计算
人工智能·python·算法·机器人
瑞华丽PLM30 分钟前
PLM系统中的BOM管理演进:从数据孤岛到全生命周期协同
大数据·人工智能·plm·国产plm·瑞华丽plm·瑞华丽
咚咚王者35 分钟前
人工智能之核心基础 机器学习 第十六章 模型优化
人工智能·机器学习
电商API_1800790524736 分钟前
1688商品详情采集API全解析:技术原理、实操指南与业务落地
大数据·前端·人工智能·网络爬虫
向上的车轮42 分钟前
麦肯锡《智能体、机器人与我们:AI时代的技能协作》
人工智能·机器人