BERT架构简介

一、BERT模型架构

BERT沿用原始Transformer模型中的编码器层,具有编码器的堆叠。但BERT没有使用解码器层,因此没有掩码多头注意力子层。(BERT的设计者认为,对序列后续部分进行掩码会阻碍注意力过程)。于是,BERT引入了双向注意力机制 ,即一个注意力头从左到右,另一个注意力头从右到左注意所有单词。

图1 BERT模型架构

二、BERT模型训练

BERT的训练过程分为两项任务:掩码语言建模 (Masked Language Modeling,MLM)和下一句预测(Next Sentence Prediction, NSP)

2.1 掩码语言建模

BERT对句子进行双向分析,随机对句子中的某一个单词进行随机掩码。

复制代码
原句:The cat sat on it because it was a nice rug.
Transformer:The cat sat on it <masked sequence>.
BERT:The cat sat on it [MASK] it was a nice rug.

上述掩码过程只是一个注意力子层的效果,当使用多个注意力子层时,就可以看到整个序列,运行注意力过程,然后观测被掩码的词元。

2.2 下一句预测

在这个过程中会添加两个新的词元:

  • CLS\]词元:二分类词元,添加到第一个句子的开头,用于预测第二个句子是否跟随第一个句子。


图2 输入嵌入过程

2.3 总结

  • 使用WordPiece对句子进行词元化
  • 使用[MASK]词元随机替换句子中的单词
  • 在序列的开头插入[CLS]分类词元
  • 在序列的两个句子结尾插入[SEP]词元
  • 句子嵌入是在词嵌入的基础上添加的,因此句子A和句子B具有不同的嵌入值
  • 位置编码采用了可学习方法,而没有采用原始Transformer中的正弦-余弦位置编码方法

参考文献

1\] 丹尼斯·罗斯曼.《基于GPT-3、ChatGPT、GPT-4等Transformer架构的自然语言处理》 \[M\]. 北京: 清华大学出版社, 2024

相关推荐
FreeCode1 分钟前
LangChain1.0智能体开发:模型使用
人工智能·langchain·agent
张较瘦_21 分钟前
[论文阅读] AI+ | 从 “刚性科层” 到 “智能协同”:一文读懂 AI 应对国家安全风险的核心逻辑
论文阅读·人工智能
anscos33 分钟前
庭田科技亮相成都复材盛会,以仿真技术赋能产业革新
大数据·人工智能·科技
阿里云大数据AI技术35 分钟前
PAI Physical AI Notebook 详解 1:基于 Isaac 仿真的操作动作数据扩增与模仿学习
人工智能
该用户已不存在37 分钟前
Vibe Coding 入门指南:从想法到产品的完整路径
前端·人工智能·后端
一只鹿鹿鹿38 分钟前
系统安全设计方案书(Word)
开发语言·人工智能·web安全·需求分析·软件系统
Likeadust38 分钟前
视频直播点播平台EasyDSS:助力现代农业驶入数字科技“快车道”
人工智能·科技·音视频
南阳木子39 分钟前
GEO:AI 时代流量新入口,四川嗨它科技如何树立行业标杆? (2025年10月最新版)
人工智能·科技
oe101941 分钟前
好文与笔记分享 A Survey of Context Engineering for Large Language Models(中)
人工智能·笔记·语言模型·agent开发
寒秋丶1 小时前
Milvus:集合(Collections)操作详解(三)
数据库·人工智能·python·ai·ai编程·milvus·向量数据库