spark 的group by ,join数据倾斜调优

背景

spark任务中最常见的耗时原因就是数据分布不均匀,从而导致有些task运行时间很长,长尾效应导致的整个job运行耗时很长

数据倾斜调优

首先我们要定位数据倾斜,我们可以通过在spark ui界面中查看某个stage下的task的耗时,如果发现某些task耗时很长,对应要处理的数据很多,证明有数据倾斜的问题,那么我们怎么处理数据倾斜呢,

1.增加shuffle操作的并行度,也就是设置spark.sql.shuffle.partitions的值,这个参数可以提高shuffle read task的并行度,也就是处理当某个stage下面task数量很少的问题,通过提供并行度,提高性能--备注:这里顺带说下shuffle write task,shuffle write task是shuffle read task的前一个阶段的任务,一般来说其是否均匀是由shuffle read task任务的数量决定的

2.对于两个大表的join时,如果某个大表数据不均匀,那么可以对这个大表的数值都增加一个0-n的随机数,另外一个大表膨胀n倍,每个数值M都膨胀为M-0,M-1...M-n,然后在对两个表进行join操作,这种情况下虽然其中的一个大表数据膨胀了n倍,但是这点性能消耗是值得的,因为这样操作后join的操作就会非常快了

3.对于group by聚合,可以采用两阶段聚合的方式,先进行局部聚合再进行全局聚合的方式进行,局部聚合方式是先对表的数值都增加一个随机数0-n,然后group by聚合,得到一个聚合的中间结果,然后再次对这个中间结果去掉随机数前缀后进行group by聚合,得到一个全局的聚合结果

4.对于大表和小表的join时,我们可以对小表进行broadcast操作,把小表进行广播,这样driver和executor的内存中都会有一份小表的rdd数据,这样executor进行join操作时使用来自小表的基于内存的操作就会非常快--备注:driver内存中也有一份小表的数据是因为driver要把这份小表的数据收集到自己的本地内存中,然后再分发到各个executor的内存中,所以broadcast广播的情况下,记得要同时增加driver和executor的内存

参考文献:https://zhuanlan.zhihu.com/p/22024169

相关推荐
小坏讲微服务1 天前
Spring Cloud Alibaba 整合 Scala 教程完整使用
java·开发语言·分布式·spring cloud·sentinel·scala·后端开发
Kiri霧1 天前
Scala 循环控制:掌握 while 和 for 循环
大数据·开发语言·scala
pale_moonlight1 天前
九、Spark基础环境实战((上)虚拟机安装Scala与windows端安装Scala)
大数据·分布式·spark
武子康1 天前
大数据-167 ELK Elastic Stack(ELK) 实战:架构要点、索引与排错清单
大数据·后端·elasticsearch
BD_Marathon1 天前
【Zookeeper】CAP理论——CAP介绍
linux·分布式·zookeeper
艾莉丝努力练剑1 天前
【Python基础:语法第一课】Python 基础语法详解:变量、类型、动态特性与运算符实战,构建完整的编程基础认知体系
大数据·人工智能·爬虫·python·pycharm·编辑器
智能相对论1 天前
10万人共同选择的背后,Rokid乐奇有自己的“破圈秘籍”
大数据·智能眼镜
人大博士的交易之路1 天前
龙虎榜——20251128
大数据·数学建模·数据挖掘·数据分析·缠论·龙虎榜·道琼斯结构
YJlio1 天前
ShareEnum 学习笔记(9.5):内网共享体检——开放共享、匿名访问与权限风险
大数据·笔记·学习
j***57681 天前
【分布式文件存储系统Minio】2024.12保姆级教程
分布式