挑战杯 基于LSTM的天气预测 - 时间序列预测

0 前言

🔥 优质竞赛项目系列,今天要分享的是

机器学习大数据分析项目

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 数据集介绍

df = pd.read_csv('/home/kesci/input/jena1246/jena_climate_2009_2016.csv')

df.head()

如上所示,每10分钟记录一次观测值,一个小时内有6个观测值,一天有144(6x24)个观测值。

给定一个特定的时间,假设要预测未来6小时的温度。为了做出此预测,选择使用5天的观察时间。因此,创建一个包含最后720(5x144)个观测值的窗口以训练模型。

下面的函数返回上述时间窗以供模型训练。参数 history_size 是过去信息的滑动窗口大小。target_size

是模型需要学习预测的未来时间步,也作为需要被预测的标签。

下面使用数据的前300,000行当做训练数据集,其余的作为验证数据集。总计约2100天的训练数据。

def univariate_data(dataset, start_index, end_index, history_size, target_size):

data = []

labels = []

    start_index = start_index + history_size
    if end_index is None:
        end_index = len(dataset) - target_size

    for i in range(start_index, end_index):
        indices = range(i-history_size, i)
        # Reshape data from (history`1_size,) to (history_size, 1)
        data.append(np.reshape(dataset[indices], (history_size, 1)))
        labels.append(dataset[i+target_size])
    return np.array(data), np.array(labels)

2 开始分析

2.1 单变量分析

首先,使用一个特征(温度)训练模型,并在使用该模型做预测。

2.1.1 温度变量

从数据集中提取温度

uni_data = df['T (degC)']

uni_data.index = df['Date Time']

uni_data.head()

观察数据随时间变化的情况

进行标准化

#标准化

uni_train_mean = uni_data[:TRAIN_SPLIT].mean()

uni_train_std = uni_data[:TRAIN_SPLIT].std()

uni_data = (uni_data-uni_train_mean)/uni_train_std
#写函数来划分特征和标签
univariate_past_history = 20
univariate_future_target = 0
x_train_uni, y_train_uni = univariate_data(uni_data, 0, TRAIN_SPLIT, # 起止区间
                                           univariate_past_history,
                                           univariate_future_target)
x_val_uni, y_val_uni = univariate_data(uni_data, TRAIN_SPLIT, None,
                                       univariate_past_history,
                                       univariate_future_target)

可见第一个样本的特征为前20个时间点的温度,其标签为第21个时间点的温度。根据同样的规律,第二个样本的特征为第2个时间点的温度值到第21个时间点的温度值,其标签为第22个时间点的温度......

2.2 将特征和标签切片

BATCH_SIZE = 256

BUFFER_SIZE = 10000

train_univariate = tf.data.Dataset.from_tensor_slices((x_train_uni, y_train_uni))
train_univariate = train_univariate.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()

val_univariate = tf.data.Dataset.from_tensor_slices((x_val_uni, y_val_uni))
val_univariate = val_univariate.batch(BATCH_SIZE).repeat()

2.3 建模

simple_lstm_model = tf.keras.models.Sequential([

tf.keras.layers.LSTM(8, input_shape=x_train_uni.shape[-2:]), # input_shape=(20,1) 不包含批处理维度

tf.keras.layers.Dense(1)

])

simple_lstm_model.compile(optimizer='adam', loss='mae')

2.4 训练模型

EVALUATION_INTERVAL = 200

EPOCHS = 10

simple_lstm_model.fit(train_univariate, epochs=EPOCHS,
                      steps_per_epoch=EVALUATION_INTERVAL,
                      validation_data=val_univariate, validation_steps=50)

训练过程

训练结果 - 温度预测结果

2.5 多变量分析

在这里,我们用过去的一些压强信息、温度信息以及密度信息来预测未来的一个时间点的温度。也就是说,数据集中应该包括压强信息、温度信息以及密度信息。

2.5.1 压强、温度、密度随时间变化绘图

2.5.2 将数据集转换为数组类型并标准化

dataset = features.values

data_mean = dataset[:TRAIN_SPLIT].mean(axis=0)

data_std = dataset[:TRAIN_SPLIT].std(axis=0)

dataset = (dataset-data_mean)/data_std

def multivariate_data(dataset, target, start_index, end_index, history_size,
                      target_size, step, single_step=False):
    data = []
    labels = []

    start_index = start_index + history_size
    
    if end_index is None:
        end_index = len(dataset) - target_size

    for i in range(start_index, end_index):
        indices = range(i-history_size, i, step) # step表示滑动步长
        data.append(dataset[indices])

        if single_step:
            labels.append(target[i+target_size])
        else:
            labels.append(target[i:i+target_size])

    return np.array(data), np.array(labels)

2.5.3 多变量建模训练训练

python 复制代码
    single_step_model = tf.keras.models.Sequential()
    single_step_model.add(tf.keras.layers.LSTM(32,
                                               input_shape=x_train_single.shape[-2:]))
    single_step_model.add(tf.keras.layers.Dense(1))
    
    single_step_model.compile(optimizer=tf.keras.optimizers.RMSprop(), loss='mae')
    
    single_step_history = single_step_model.fit(train_data_single, epochs=EPOCHS,
                                                steps_per_epoch=EVALUATION_INTERVAL,
                                                validation_data=val_data_single,
                                                validation_steps=50)


    def plot_train_history(history, title):
        loss = history.history['loss']
        val_loss = history.history['val_loss']
    
        epochs = range(len(loss))
    
        plt.figure()
    
        plt.plot(epochs, loss, 'b', label='Training loss')
        plt.plot(epochs, val_loss, 'r', label='Validation loss')
        plt.title(title)
        plt.legend()
    
        plt.show()

    plot_train_history(single_step_history,
                       'Single Step Training and validation loss')


6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关推荐
蒙娜丽宁5 分钟前
《Python OpenCV从菜鸟到高手》——零基础进阶,开启图像处理与计算机视觉的大门!
python·opencv·计算机视觉
光芒再现dev7 分钟前
已解决,部署GPTSoVITS报错‘AsyncRequest‘ object has no attribute ‘_json_response_data‘
运维·python·gpt·语言模型·自然语言处理
好喜欢吃红柚子20 分钟前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
小馒头学python25 分钟前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
神奇夜光杯34 分钟前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
千天夜1 小时前
使用UDP协议传输视频流!(分片、缓存)
python·网络协议·udp·视频流
测试界的酸菜鱼1 小时前
Python 大数据展示屏实例
大数据·开发语言·python
羊小猪~~1 小时前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
放飞自我的Coder1 小时前
【python ROUGE BLEU jiaba.cut NLP常用的指标计算】
python·自然语言处理·bleu·rouge·jieba分词
正义的彬彬侠2 小时前
【scikit-learn 1.2版本后】sklearn.datasets中load_boston报错 使用 fetch_openml 函数来加载波士顿房价
python·机器学习·sklearn