强化学习(SQL)

SQL------soft Q-learning

这是一种在最大化期望累计奖励的基础上,最大化熵项的算法,即该算法的优化目标是累计奖励和熵(entropy)的和

SQL的好处:

①探索性强:可以在多模态任务中找到最佳的方案,多模态是指agents需要去规划多个目标

②更鲁棒性:目标中加入熵会让agent学习到所有动作,当环境中加入干扰噪声,呢么之前规划好的动作可能就不能用了,那么此时就可以用其余动作

③组合性更强:通过最大熵,policy学习到所有解决任务的方法,这样的policy就更有利于学习新的任务

SQL的输出是一个玻尔兹曼分布,包括了每个动作的可能性,当然不同动作采样概率有高有低,概率大容易被采到并输出,概率小的较难被输出。

举例说明SQL的抗干扰性:假设已经找到了最佳的路径,但是突然出现干扰,如果是Q-learning这种输出靠着最大Q对应的动作,那么agent就会一直在干扰处徘徊,但是SQL就会不一样,对于所有动作都会被选择到,只不过概率有高低罢了,那么当遇到干扰时,agent就有机会找到另一条合适的路径。

含熵优化目标:

增加信息熵项,那么优化时,就会使得输出的每一个动作的概率尽量分散,因为在一个集合中,体系越混乱,种类越趋于平均,熵值越大。

伪代码:

初始化分布参数:

更新目标参数:

空的回访缓存区D

for each epoch do

for each t do

通过获取状态对应的动作:,其中

与环境交互获得下一时刻的状态:

将经验数据存入回放缓存区D

从回放缓存区中抽取小样本数据

更新值函数网络:计算状态对应的action及value,计算梯度并且更新参数

更新采集网络:计算状态对应的和采集到的action,更新网络参数

end for

达到目标参数更新频次:

end for

注意:

1、有两个网络:采集网络&值函数网络,与AC算法的actor网络&critic网络形式相似

2、两大优化算法:SVGD&ADAM,采集网络:SVGD优化KL散度然后Adam更新参数;值函数网络:Adam优化MSE以及更新参数

相关推荐
姚瑞南7 分钟前
【AI 风向标】四种深度学习算法(CNN、RNN、GAN、RL)的通俗解释
人工智能·深度学习·算法
渡我白衣29 分钟前
深度学习入门(一)——从神经元到损失函数,一步步理解前向传播(上)
人工智能·深度学习·学习
一车小面包32 分钟前
对注意力机制的直观理解
人工智能·深度学习·机器学习
AI小云44 分钟前
【Python与AI基础】Python编程基础:模块和包
人工智能·python
努力努力再努力wz1 小时前
【C++进阶系列】:万字详解智能指针(附模拟实现的源码)
java·linux·c语言·开发语言·数据结构·c++·python
XZSSWJS1 小时前
深度学习基础-Chapter 02-Softmax与交叉熵
人工智能·深度学习
小蕾Java2 小时前
Python详细安装教程(附PyCharm使用)
开发语言·python·pycharm
ringking1232 小时前
BEVFUSION解读(五)
深度学习
weixin_307779132 小时前
使用AWS IAM和Python自动化权限策略分析与导出
开发语言·python·自动化·云计算·aws
惜月_treasure2 小时前
从零构建私域知识库问答机器人:Python 全栈实战(附完整源码)
开发语言·python·机器人