强化学习(SQL)

SQL------soft Q-learning

这是一种在最大化期望累计奖励的基础上,最大化熵项的算法,即该算法的优化目标是累计奖励和熵(entropy)的和

SQL的好处:

①探索性强:可以在多模态任务中找到最佳的方案,多模态是指agents需要去规划多个目标

②更鲁棒性:目标中加入熵会让agent学习到所有动作,当环境中加入干扰噪声,呢么之前规划好的动作可能就不能用了,那么此时就可以用其余动作

③组合性更强:通过最大熵,policy学习到所有解决任务的方法,这样的policy就更有利于学习新的任务

SQL的输出是一个玻尔兹曼分布,包括了每个动作的可能性,当然不同动作采样概率有高有低,概率大容易被采到并输出,概率小的较难被输出。

举例说明SQL的抗干扰性:假设已经找到了最佳的路径,但是突然出现干扰,如果是Q-learning这种输出靠着最大Q对应的动作,那么agent就会一直在干扰处徘徊,但是SQL就会不一样,对于所有动作都会被选择到,只不过概率有高低罢了,那么当遇到干扰时,agent就有机会找到另一条合适的路径。

含熵优化目标:

增加信息熵项,那么优化时,就会使得输出的每一个动作的概率尽量分散,因为在一个集合中,体系越混乱,种类越趋于平均,熵值越大。

伪代码:

初始化分布参数:

更新目标参数:

空的回访缓存区D

for each epoch do

for each t do

通过获取状态对应的动作:,其中

与环境交互获得下一时刻的状态:

将经验数据存入回放缓存区D

从回放缓存区中抽取小样本数据

更新值函数网络:计算状态对应的action及value,计算梯度并且更新参数

更新采集网络:计算状态对应的和采集到的action,更新网络参数

end for

达到目标参数更新频次:

end for

注意:

1、有两个网络:采集网络&值函数网络,与AC算法的actor网络&critic网络形式相似

2、两大优化算法:SVGD&ADAM,采集网络:SVGD优化KL散度然后Adam更新参数;值函数网络:Adam优化MSE以及更新参数

相关推荐
明月清风徐徐44 分钟前
Miniconda + VSCode 的Python环境搭建
ide·vscode·python
笨鸟笃行1 小时前
爬虫第七篇数据爬取及解析
开发语言·爬虫·python
java1234_小锋1 小时前
一周学会Flask3 Python Web开发-response响应格式
开发语言·python·flask·flask3
大数据追光猿1 小时前
Python中的Flask深入认知&搭建前端页面?
前端·css·python·前端框架·flask·html5
java1234_小锋1 小时前
一周学会Flask3 Python Web开发-flask3模块化blueprint配置
开发语言·python·flask·flask3
莫忘初心丶1 小时前
python flask 使用教程 快速搭建一个 Web 应用
前端·python·flask
不爱学英文的码字机器2 小时前
Python爬虫实战:从零到一构建数据采集系统
开发语言·爬虫·python
鹿鸣悠悠2 小时前
Python 类和对象详解
开发语言·python
laocooon5238578862 小时前
用Python实现的双向链表类,包含了头插、尾插、归并排序等功能
开发语言·python
百锦再2 小时前
在Linux上创建一个Docker容器并在其中执行Python脚本
linux·python·docker