强化学习(SQL)

SQL------soft Q-learning

这是一种在最大化期望累计奖励的基础上,最大化熵项的算法,即该算法的优化目标是累计奖励和熵(entropy)的和

SQL的好处:

①探索性强:可以在多模态任务中找到最佳的方案,多模态是指agents需要去规划多个目标

②更鲁棒性:目标中加入熵会让agent学习到所有动作,当环境中加入干扰噪声,呢么之前规划好的动作可能就不能用了,那么此时就可以用其余动作

③组合性更强:通过最大熵,policy学习到所有解决任务的方法,这样的policy就更有利于学习新的任务

SQL的输出是一个玻尔兹曼分布,包括了每个动作的可能性,当然不同动作采样概率有高有低,概率大容易被采到并输出,概率小的较难被输出。

举例说明SQL的抗干扰性:假设已经找到了最佳的路径,但是突然出现干扰,如果是Q-learning这种输出靠着最大Q对应的动作,那么agent就会一直在干扰处徘徊,但是SQL就会不一样,对于所有动作都会被选择到,只不过概率有高低罢了,那么当遇到干扰时,agent就有机会找到另一条合适的路径。

含熵优化目标:

增加信息熵项,那么优化时,就会使得输出的每一个动作的概率尽量分散,因为在一个集合中,体系越混乱,种类越趋于平均,熵值越大。

伪代码:

初始化分布参数:

更新目标参数:

空的回访缓存区D

for each epoch do

for each t do

通过获取状态对应的动作:,其中

与环境交互获得下一时刻的状态:

将经验数据存入回放缓存区D

从回放缓存区中抽取小样本数据

更新值函数网络:计算状态对应的action及value,计算梯度并且更新参数

更新采集网络:计算状态对应的和采集到的action,更新网络参数

end for

达到目标参数更新频次:

end for

注意:

1、有两个网络:采集网络&值函数网络,与AC算法的actor网络&critic网络形式相似

2、两大优化算法:SVGD&ADAM,采集网络:SVGD优化KL散度然后Adam更新参数;值函数网络:Adam优化MSE以及更新参数

相关推荐
B站_计算机毕业设计之家8 小时前
猫眼电影数据可视化与智能分析平台 | Python Flask框架 Echarts 推荐算法 爬虫 大数据 毕业设计源码
python·机器学习·信息可视化·flask·毕业设计·echarts·推荐算法
是店小二呀8 小时前
CANN 异构计算的极限扩展:从算子融合到多卡通信的统一优化策略
人工智能·深度学习·transformer
PPPPPaPeR.8 小时前
光学算法实战:深度解析镜片厚度对前后表面折射/反射的影响(纯Python实现)
开发语言·python·数码相机·算法
JaydenAI8 小时前
[拆解LangChain执行引擎] ManagedValue——一种特殊的只读虚拟通道
python·langchain
小徐xxx8 小时前
ResNet介绍
深度学习·resnet·残差连接
骇城迷影8 小时前
Makemore 核心面试题大汇总
人工智能·pytorch·python·深度学习·线性回归
长安牧笛8 小时前
反传统学习APP,摒弃固定课程顺序,根据用户做题正确性,学习速度,动态调整课程难度,比如某知识点学不会,自动推荐基础讲解和练习题,学习后再进阶,不搞一刀切。
python·编程语言
码界筑梦坊9 小时前
330-基于Python的社交媒体舆情监控系统
python·mysql·信息可视化·数据分析·django·毕业设计·echarts
森焱森9 小时前
详解 Spring Boot、Flask、Nginx、Redis、MySQL 的关系与协作
spring boot·redis·python·nginx·flask