四、分类算法 - 朴素贝叶斯算法

目录

1、朴素贝叶斯算法

[1.1 案例](#1.1 案例)

[1.2 联合概率、条件概率、相互独立](#1.2 联合概率、条件概率、相互独立)

[1.3 贝叶斯公式](#1.3 贝叶斯公式)

[1.4 朴素贝叶斯算法原理](#1.4 朴素贝叶斯算法原理)

[1.5 应用场景](#1.5 应用场景)

2、朴素贝叶斯算法对文本进行分类

[2.1 案例](#2.1 案例)

[2.2 拉普拉斯平滑系数](#2.2 拉普拉斯平滑系数)

3、API

4、案例:20类新闻分类

[4.1 步骤分析](#4.1 步骤分析)

[4.2 代码分析](#4.2 代码分析)

5、总结


  1. sklearn转换器和估算器
  2. KNN算法
  3. 模型选择和调优
  4. 朴素贝叶斯算法
  5. 决策树
  6. 随机森林

1、朴素贝叶斯算法

朴素?

假设:特征与特征之间是相互独立的

1.1 案例

1.2 联合概率、条件概率、相互独立

1.3 贝叶斯公式

1.4 朴素贝叶斯算法原理

朴素 + 贝叶斯

1.5 应用场景

  • 文本分类(单词作为特征)

2、朴素贝叶斯算法对文本进行分类

2.1 案例

2.2 拉普拉斯平滑系数

3、API

4、案例:20类新闻分类

4.1 步骤分析

  • 获取数据
  • 划分数据集
  • 特征工程 --文本特征抽取
  • 朴素贝叶斯预估器流程
  • 模型评估

4.2 代码分析

python 复制代码
from sklearn.datasets import load_iris, fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.naive_bayes import MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler

def knn_iris():
    # 用KNN 算法对鸢尾花进行分类
    # 1、获取数据
    iris = load_iris()
    # 2、划分数据集
    x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=6)
    # 3、特征工程 - 标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 4、KNN 算法预估器
    estimator = KNeighborsClassifier(n_neighbors=3)
    estimator.fit(x_train,y_train)
    # 5、模型评估
    # 方法1 :直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n",y_predict)
    print("直接比对真实值和预测值:\n",y_test == y_predict)
    # 方法2:计算准确率
    score = estimator.score(x_test,y_test)
    print("准确率为:\n",score)
    return None

def knn_iris_gscv():
    # 用KNN 算法对鸢尾花进行分类,添加网格搜索和交叉验证
    # 1、获取数据
    iris = load_iris()

    # 2、划分数据集
    x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=6)

    # 3、特征工程 - 标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)

    # 4、KNN 算法预估器
    estimator = KNeighborsClassifier()
    # 加入网格搜索和交叉验证
    # 参数准备
    param_dict = {"n_neighbors":[1,3,5,7,9,11]}
    estimator = GridSearchCV(estimator,param_grid=param_dict,cv=10)
    estimator.fit(x_train,y_train)

    # 5、模型评估
    # 方法1 :直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n",y_predict)
    print("直接比对真实值和预测值:\n",y_test == y_predict)
    # 方法2:计算准确率
    score = estimator.score(x_test,y_test)
    print("准确率为:\n",score)

    # 最佳参数:best_params_
    print("最佳参数:\n",estimator.best_params_)
    # 最佳结果:best_score_
    print("最佳结果:\n",estimator.best_score_)
    # 最佳估计值:best_estimator_
    print("最佳估计值:\n",estimator.best_estimator_)
    # 交叉验证结果:cv_results_
    print("交叉验证结果:\n",estimator.cv_results_)
    return None

def nb_news():
    # 用朴素贝叶斯算法对新闻进行分类
    # 1、获取数据
    news = fetch_20newsgroups(subset="all")
    # 2、划分数据集
    x_train,x_test,y_train,y_test = train_test_split(news.data,news.target)
    # 3、特征工程:文本特征抽取-tfidf
    transfer = TfidfVectorizer()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 4、用朴素贝叶斯算法预估器流程
    estimator = MultinomialNB()
    estimator.fit(x_train,y_train)
    # 5、模型评估
    # 方法1 :直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)
    # 方法2:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)
    return None

if __name__ == "__main__":
    # 代码1 :用KNN算法对鸢尾花进行分类
    # knn_iris()
    # 代码2 :用KNN算法对鸢尾花进行分类,添加网格搜索和交叉验证
    # knn_iris_gscv()
    # 代码3:用朴素贝叶斯算法对新闻进行分类
    nb_news()

5、总结

相关推荐
和光同尘@15 分钟前
74. 搜索二维矩阵(LeetCode 热题 100)
数据结构·c++·线性代数·算法·leetcode·职场和发展·矩阵
一去不复返的通信er17 分钟前
SVD预编码
算法·信息与通信·预编码算法·通信原理
柠石榴1 小时前
【练习】【二分】力扣热题100 34. 在排序数组中查找元素的第一个和最后一个位置
c++·算法·leetcode·二分
Tisfy1 小时前
LeetCode 2209.用地毯覆盖后的最少白色砖块:记忆化搜索之——深度优先搜索(DFS)
算法·leetcode·深度优先·dfs·题解·记忆化搜索·深度优先搜索
Trouvaille ~1 小时前
【C++篇】树影摇曳,旋转无声:探寻AVL树的平衡之道
数据结构·c++·算法·蓝桥杯·计算机科学·平衡二叉树·avl
陈浩源同学2 小时前
学习 TypeScript 栈和队列数据结构
前端·算法
Sodas(填坑中....)2 小时前
SVM对偶问题
人工智能·机器学习·支持向量机·数据挖掘
夏末秋也凉3 小时前
力扣-回溯-491 非递减子序列
数据结构·算法·leetcode
penguin_bark3 小时前
三、动规_子数组系列
算法·leetcode
kyle~3 小时前
thread---基本使用和常见错误
开发语言·c++·算法