四、分类算法 - 朴素贝叶斯算法

目录

1、朴素贝叶斯算法

[1.1 案例](#1.1 案例)

[1.2 联合概率、条件概率、相互独立](#1.2 联合概率、条件概率、相互独立)

[1.3 贝叶斯公式](#1.3 贝叶斯公式)

[1.4 朴素贝叶斯算法原理](#1.4 朴素贝叶斯算法原理)

[1.5 应用场景](#1.5 应用场景)

2、朴素贝叶斯算法对文本进行分类

[2.1 案例](#2.1 案例)

[2.2 拉普拉斯平滑系数](#2.2 拉普拉斯平滑系数)

3、API

4、案例:20类新闻分类

[4.1 步骤分析](#4.1 步骤分析)

[4.2 代码分析](#4.2 代码分析)

5、总结


  1. sklearn转换器和估算器
  2. KNN算法
  3. 模型选择和调优
  4. 朴素贝叶斯算法
  5. 决策树
  6. 随机森林

1、朴素贝叶斯算法

朴素?

假设:特征与特征之间是相互独立的

1.1 案例

1.2 联合概率、条件概率、相互独立

1.3 贝叶斯公式

1.4 朴素贝叶斯算法原理

朴素 + 贝叶斯

1.5 应用场景

  • 文本分类(单词作为特征)

2、朴素贝叶斯算法对文本进行分类

2.1 案例

2.2 拉普拉斯平滑系数

3、API

4、案例:20类新闻分类

4.1 步骤分析

  • 获取数据
  • 划分数据集
  • 特征工程 --文本特征抽取
  • 朴素贝叶斯预估器流程
  • 模型评估

4.2 代码分析

python 复制代码
from sklearn.datasets import load_iris, fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.naive_bayes import MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler

def knn_iris():
    # 用KNN 算法对鸢尾花进行分类
    # 1、获取数据
    iris = load_iris()
    # 2、划分数据集
    x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=6)
    # 3、特征工程 - 标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 4、KNN 算法预估器
    estimator = KNeighborsClassifier(n_neighbors=3)
    estimator.fit(x_train,y_train)
    # 5、模型评估
    # 方法1 :直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n",y_predict)
    print("直接比对真实值和预测值:\n",y_test == y_predict)
    # 方法2:计算准确率
    score = estimator.score(x_test,y_test)
    print("准确率为:\n",score)
    return None

def knn_iris_gscv():
    # 用KNN 算法对鸢尾花进行分类,添加网格搜索和交叉验证
    # 1、获取数据
    iris = load_iris()

    # 2、划分数据集
    x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=6)

    # 3、特征工程 - 标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)

    # 4、KNN 算法预估器
    estimator = KNeighborsClassifier()
    # 加入网格搜索和交叉验证
    # 参数准备
    param_dict = {"n_neighbors":[1,3,5,7,9,11]}
    estimator = GridSearchCV(estimator,param_grid=param_dict,cv=10)
    estimator.fit(x_train,y_train)

    # 5、模型评估
    # 方法1 :直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n",y_predict)
    print("直接比对真实值和预测值:\n",y_test == y_predict)
    # 方法2:计算准确率
    score = estimator.score(x_test,y_test)
    print("准确率为:\n",score)

    # 最佳参数:best_params_
    print("最佳参数:\n",estimator.best_params_)
    # 最佳结果:best_score_
    print("最佳结果:\n",estimator.best_score_)
    # 最佳估计值:best_estimator_
    print("最佳估计值:\n",estimator.best_estimator_)
    # 交叉验证结果:cv_results_
    print("交叉验证结果:\n",estimator.cv_results_)
    return None

def nb_news():
    # 用朴素贝叶斯算法对新闻进行分类
    # 1、获取数据
    news = fetch_20newsgroups(subset="all")
    # 2、划分数据集
    x_train,x_test,y_train,y_test = train_test_split(news.data,news.target)
    # 3、特征工程:文本特征抽取-tfidf
    transfer = TfidfVectorizer()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 4、用朴素贝叶斯算法预估器流程
    estimator = MultinomialNB()
    estimator.fit(x_train,y_train)
    # 5、模型评估
    # 方法1 :直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接比对真实值和预测值:\n", y_test == y_predict)
    # 方法2:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)
    return None

if __name__ == "__main__":
    # 代码1 :用KNN算法对鸢尾花进行分类
    # knn_iris()
    # 代码2 :用KNN算法对鸢尾花进行分类,添加网格搜索和交叉验证
    # knn_iris_gscv()
    # 代码3:用朴素贝叶斯算法对新闻进行分类
    nb_news()

5、总结

相关推荐
此生只爱蛋2 分钟前
【手撕排序2】快速排序
c语言·c++·算法·排序算法
咕咕吖33 分钟前
对称二叉树(力扣101)
算法·leetcode·职场和发展
九圣残炎1 小时前
【从零开始的LeetCode-算法】1456. 定长子串中元音的最大数目
java·算法·leetcode
lulu_gh_yu1 小时前
数据结构之排序补充
c语言·开发语言·数据结构·c++·学习·算法·排序算法
丫头,冲鸭!!!2 小时前
B树(B-Tree)和B+树(B+ Tree)
笔记·算法
Re.不晚2 小时前
Java入门15——抽象类
java·开发语言·学习·算法·intellij-idea
艾派森2 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
为什么这亚子2 小时前
九、Go语言快速入门之map
运维·开发语言·后端·算法·云原生·golang·云计算
3 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
~yY…s<#>3 小时前
【刷题17】最小栈、栈的压入弹出、逆波兰表达式
c语言·数据结构·c++·算法·leetcode