k-邻近算法(kNN)

目录

k-近邻算法概述

k-近邻算法的一般流程

kNN算法伪代码


k-近邻算法概述

优点:精度高、对异常值不敏感、无数据输入假定

缺点:计算复杂度高、空间复杂度高

适用数据范围:数值型和标称型

k-近邻算法的一般流程

(1)收集数据

(2)准备数据

(3)分析数据

(4)训练算法(不需要)

(5)测试算法

(6)使用算法

python 复制代码
from numpy import *
import operator
def createDataSet():
  group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
  labels = ['A', 'A', 'B', 'B']
  return group, labels
python 复制代码
group, labels = createDataSet()
python 复制代码
group
复制代码
array([[1. , 1.1],
       [1. , 1. ],
       [0. , 0. ],
       [0. , 0.1]])
python 复制代码
labels
复制代码
['A', 'A', 'B', 'B']
python 复制代码
import matplotlib.pyplot as plt
x = group[:, 0]
y = group[:, 1]
plt.scatter(x, y)
plt.xlim(-0.2, 1.2)
plt.ylim(-0.2, 1.2)
for i, pos in enumerate(zip(x, y)):
    plt.text(pos[0]-0.01, pos[1], f'{labels[i]}', ha='right')
plt.show()

kNN算法伪代码

对未知类别属性的数据集中的每个点依次执行以下操作:

(1)计算已知类别数据集中的点与当前点之间的距离

(2)按照距离递增的次序排列

(3)选取与当前点距离最小的k个点

(4)确定前k个点所在类别的出现频率

(5)返回前k个点出现频率最高的类别作为当前点的预测分类

python 复制代码
def classify0(inX, dataSet, labels, k):
  dataSetSize = dataSet.shape[0]
  diffMat = tile(inX, (dataSetSize, 1)) - dataSet
  sqDiffMat = diffMat ** 2
  sqDistances = sqDiffMat.sum(axis=1)
  distances = sqDistances**0.5
  sortedDistIndicies = distances.argsort()
  classCount = {}
  for i in range(k):
    voteIlabel = labels[sortedDistIndicies[i]]
    classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
  sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
  return sortedClassCount[0][0]
python 复制代码
classify0([0, 0], group, labels, 3)

'B'


这段代码实现了k近邻算法中的分类函数,用于根据输入的数据点inX,在数据集dataSet中找到距离最近的k个邻居,并统计它们的类别标签,最终返回频率最高的类别。

现在让我们逐步分析这段代码:

  1. dataSetSize = dataSet.shape[0]: 获取数据集的行数,即数据点的数量。

  2. diffMat = tile(inX, (dataSetSize, 1)) - dataSet: 将输入数据点inX复制成与数据集相同大小的矩阵,然后计算与数据集中每个点的差值。

  3. sqDiffMat = diffMat ** 2: 对差值矩阵的每个元素进行平方操作。

  4. sqDistances = sqDiffMat.sum(axis=1): 沿着列的方向对平方差值矩阵进行求和,得到每个数据点与输入点的平方距离。

  5. distances = sqDistances**0.5: 对平方距离进行开方,得到真实距离。

  6. sortedDistIndicies = distances.argsort(): 对距离进行排序,返回排序后的索引值。

  7. classCount = {}: 初始化一个空字典,用于存储每个类别的投票数。

  8. for i in range(k):: 遍历前k个最小距离的索引。

  9. voteIlabel = labels[sortedDistIndicies[i]]: 获取对应索引的类别标签。

  10. classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1: 统计每个类别的投票数,使用get方法获取字典中的值,如果键不存在则返回默认值0。

  11. sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True): 对字典按照值进行排序,items()方法返回字典的键值对,key=operator.itemgetter(1)表示按照值排序,reverse=True表示降序排列。

  12. return sortedClassCount[0][0]: 返回排序后的字典中频率最高的类别标签,即k个邻居中出现最多的类别。

这个函数的核心思想是通过计算输入点与数据集中每个点的距离,找到距离最近的k个邻居,然后通过投票机制确定输入点的类别。

相关推荐
计算机毕设小月哥1 小时前
【Hadoop+Spark+python毕设】中风患者数据可视化分析系统、计算机毕业设计、包括数据爬取、Spark、数据分析、数据可视化、Hadoop
后端·python·mysql
Keep_Trying_Go1 小时前
基于Zero-Shot的目标计数算法详解(Open-world Text-specified Object Counting)
人工智能·pytorch·python·算法·多模态·目标统计
计算机毕设匠心工作室2 小时前
【python大数据毕设实战】强迫症特征与影响因素数据分析系统、Hadoop、计算机毕业设计、包括数据爬取、数据分析、数据可视化、机器学习、实战教学
后端·python·mysql
roman_日积跬步-终至千里3 小时前
【模式识别与机器学习(16)】聚类分析【1】:基础概念与常见方法
人工智能·机器学习
Trouville013 小时前
Pycharm软件初始化设置,字体和shell路径如何设置到最舒服
ide·python·pycharm
高-老师3 小时前
WRF模式与Python融合技术在多领域中的应用及精美绘图
人工智能·python·wrf模式
小白学大数据3 小时前
基于Splash的搜狗图片动态页面渲染爬取实战指南
开发语言·爬虫·python
零日失眠者3 小时前
【文件管理系列】003:重复文件查找工具
后端·python