JVM—Java内存区域详解

博客文章地址:JVM---Java内存区域详解

个人博客主页:www.samsa-blog.top 欢迎各位掘友交流

1、Java运行时数据区

各个区域是否会被线程共享:

区域 是否线程共享 是否会内存溢出
方法区
虚拟机栈
本地方法栈
程序计数器 不会

1.1 程序计数器

程序计数器(Program Counter Register)是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号指示器。

在Java虚拟机的概念模型里,字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,它是程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。

由于Java虚拟机的多线程是通过线程轮流切换、分配处理器执行时间的方式来实现的,在任何一个确定的时刻,一个处理器(对于多核处理器来说是一个内核)都只会执行一条线程中的指令。因此,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各条线程之间计数器互不影响,独立存储,我们称这类内存区域为 "线程私有"的内存

如果线程正在执行的是一个Java方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是本地(Native)方法,这个计数器值则应为空(Undefined)。此内存区域是唯一一个在《Java虚拟机规范》中没有规定任何OutOfMemoryError情况的区域。

1.2 Java虚拟机栈

与程序计数器一样,Java虚拟机栈(Java Virtual Machine Stack)也是线程私有的,它的生命周期与线程相同。

虚拟机栈描述的是Java方法执行的线程内存模型:每个方法被执行的时候,Java虚拟机都会同步创建一个栈帧(Stack Frame)用于存储局部变量表、操作数栈、动态连接、方法出口等信息。每一个方法被调用直至执行完毕的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。

上面提到的局部变量表:存放了编译期可被Java虚拟机识别的类型:

  • 基本数据类型(boolean、byte、char、short、int、float、long、double)
  • 对象引用(reference类型,它并不等同于对象本身,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或者其他与此对象相关的位置)
  • returnAddress类型(指向了一条字节码指令的地址)。

在《Java虚拟机规范》中,对这个内存区域规定了两类异常状况:

  • 如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError异常;
  • 如果Java虚拟机栈容量可以动态扩展,当栈扩展时无法申请到足够的内存会抛出OutOfMemoryError异常。

1.3 本地方法栈

首先,本地方法栈也是不会被线程所共享的。

本地方法栈(Native Method Stacks)与虚拟机栈所发挥的作用是非常相似的,其区别只是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的本地(Native)方法服务。

本地方法栈也会在栈深度溢出或者栈扩展失败时分别抛出StackOverflowError和OutOfMemoryError异常。

1.4 Java堆

对于Java应用程序来说,Java堆(Java Heap)是虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。

此内存区域的唯一目的就是存放对象实例,Java世界里"几乎"所有的对象实例都在这里分配内存。

Java堆是垃圾收集器管理的内存区域,因此一些资料中它也被称作"GC堆"(Garbage Collected Heap);这里我们先不讲 基于分代收集理论和垃圾收集器,后面会在 垃圾收集器和内存分配详细讲解。

根据《Java虚拟机规范》的规定,Java堆可以处于物理上不连续的内存空间中,但在逻辑上它应该被视为连续的,这点就像我们用磁盘空间去存储文件一样,并不要求每个文件都连续存放。但对于大对象(典型的如数组对象),多数虚拟机实现出于实现简单、存储高效的考虑,很可能会要求连续的内存空间。

Java堆既可以被实现成固定大小的,也可以是可扩展的,不过当前主流的Java虚拟机都是按照可扩展来实现的(通过参数-Xmx和-Xms设定)。如果在Java堆中没有内存完成实例分配,并且堆也无法再扩展时,Java虚拟机将会抛出OutOfMemoryError异常。

1.5 方法区

方法区(Method Area)与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类型信息、常量、静态变量、即时编译器编译后的代码缓存等数据。

《Java虚拟机规范》对方法区的约束是非常宽松的,除了和Java堆一样不需要连续的内存和可以选择固定大小或者可扩展外,甚至还可以选择不实现垃圾收集。这就产生了,在JDK 8 之前,在HotSpot虚拟机上开发,部署的程序员,很多人把方法区称呼为"永久代"(Permanent Generation),

相对而言,垃圾收集行为在这个区域的确是比较少出现的,但并非数据进入了方法区就如永久代的名字一样"永久"存在了。这区域的内存本质上这两者并不是等价的,因为仅仅是当时的HotSpot虚拟机设计团队选择把收集器的分代设计扩展至方法区,或者说使用永久代来实现方法区而已,这样使得HotSpot的垃圾收集器能够像管理Java堆一样管理这部分内存,省去专门为方法区编写内存管理代码的工作。

回收目标主要是针对常量池的回收和对类型的卸载,一般来说这个区域的回收效果比较难令人满意,尤其是类型的卸载,条件相当苛刻,但是这部分区域的回收有时又确实是必要的。

根据《Java虚拟机规范》的规定,如果方法区无法满足新的内存分配需求时,将抛出OutOfMemoryError异常。

1.6 运行时常量池

运行时常量池(Runtime Constant Pool)是方法区的一部分。Class文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量池表(Constant Pool Table),用于存放编译期生成的各种字面量与符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。

既然运行时常量池是方法区的一部分,自然受到方法区内存的限制,当常量池无法再申请到内存时会抛出OutOfMemoryError异常。

1.7 直接内存

直接内存(Direct Memory)并不是虚拟机运行时数据区的一部分,也不是《Java虚拟机规范》中定义的内存区域。但是这部分内存也被频繁地使用,而且也可能导致OutOfMemoryError异常出现,

在JDK 1.4中新加入了NIO(New Input/Output)类,引入了一种基于通道(Channel)与缓冲区(Buffer)的I/O方式,它可以使用Native函数库直接分配堆外内存,然后通过一个存储在Java堆里面的DirectByteBuffer对象作为这块内存的引用进行操作。这样能在一些场景中显著提高性能,因为避免了在Java堆和Native堆中来回复制数据。

显然,本机直接内存的分配不会受到Java堆大小的限制,但是,既然是内存,则肯定还是会受到本机总内存(包括物理内存、SWAP分区或者分页文件)大小以及处理器寻址空间的限制,一般服务器管理员配置虚拟机参数时,会根据实际内存去设置-Xmx等参数信息,但经常忽略掉直接内存,使得各个内存区域总和大于物理内存限制(包括物理的和操作系统级的限制),从而导致动态扩展时出现OutOfMemoryError异常。

2、对象分配、布局和访问过程

2.1 对象创建

对象的创建通常(例外:复制、反序列化)仅仅是一个new关键字而已,而在虚拟机中,对象(文中讨论的对象限于普通Java对象,不包括数组和Class对象等)的创建又是怎样一个过程呢?

当Java虚拟机遇到一条字节码new指令时,首先将去检查这个指令的参数是否能在常量池中定位到一个类的符号引用,并且检查这个符号引用代表的类是否已被加载、解析和初始化过。如果没有,那必须先执行相应的类加载过程。

在类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需内存的大小在类加载完成后便可完全确定。

两种方式为对象分配内存空间:

  • 指针碰撞(Bump ThePointer)

    为对象分配空间的任务实际上便等同于把一块确定大小的内存块从Java堆中划分出来。

    假设Java堆中内存是绝对规整的,所有被使用过的内存都被放在一边,空闲的内存被放在另一边,中间放着一个指针作为分界点的指示器,那所分配内存就仅仅是把那个指针向空闲空间方向挪动一段与对象大小相等的距离;这种方式就是 指针碰撞。

  • 空闲列表(Free List)

    如果Java堆中的内存并不是规整的,已被使用的内存和空闲的内存相互交错在一起,那就没有办法简单地进行指针碰撞了,虚拟机就必须维护一个列表,记录上哪些内存块是可用的,在分配的时候从列表中找到一块足够大的空间划分给对象实例,并更新列表上的记录,这种分配方式称为"空闲列表"(Free List)

至于JVM使用哪种方式,由Java堆是否规整决定,而Java堆是否规整又由所采用的垃圾收集器是否带有空间压缩整理(Compact)的能力决定。

因此,当使用Serial、ParNew等带压缩整理过程的收集器时,系统采用的分配算法是指针碰撞,既简单又高效;

而当使用CMS这种基于清除(Sweep)算法的收集器时,理论上就只能采用较为复杂的空闲列表来分配内存。

JVM在为对象分配内存空间时,还需要解决线程安全的问题:

对象创建在虚拟机中是非常频繁的行为,即使仅仅修改一个指针所指向的位置,在并发情况下也并不是线程安全的,可能出现正在给对象A分配内存,指针还没来得及修改,对象B又同时使用了原来的指针来分配内存的情况。

有两种解决方案:

  • CAS方式:

    一种是对分配内存空间的动作进行同步处理------实际上虚拟机是采用CAS配上失败重试的方式保证更新操作的原子性。

  • TLAB(Thread Local Allocation Buffer,TLAB)

    另外一种是把内存分配的动作按照线程划分在不同的空间之中进行,即每个线程在Java堆中预先分配一小块内存,称为本地线程分配缓冲(Thread Local Allocation Buffer,TLAB),哪个线程要分配内存,就在哪个线程的本地缓冲区中分配,只有本地缓冲区用完了,分配新的缓存区时才需要同步锁定。虚拟机是否使用TLAB,可以通过-XX:+/-UseTLAB参数来设定。

好,现在对象创建完成了,下面需要了解一个对象的创建,都有哪些信息,以及这些信息在堆内存中的存储布局。

2.2 对象内存布局

在HotSpot虚拟机里,对象在堆内存中的存储布局可以划分为三个部分:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。

  • 对象头(Header):

    HotSpot虚拟机对象的对象头部分包括两类信息:

    • Mark Word:第一类是用于存储对象自身的运行时数据,如:哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等,这部分数据的长度在32位和64位的虚拟机(未开启压缩指针)中分别为32个比特和64个比特,官方称它为"Mark Word"。
    • 类型指针:即对象指向它的类型元数据的指针,Java虚拟机通过这个指针来确定该对象是哪个类的实例。
  • 实例数据(Instance Data):

    对象真正存储的有效信息,即我们在程序代码里面所定义的各种类型的字段内容,无论是从父类继承下来的,还是在子类中定义的字段都必须记录起来。

    这部分的存储顺序会受到虚拟机分配策略参数(-XX:FieldsAllocationStyle参数)和字段在Java源码中定义顺序的影响。

    HotSpot虚拟机默认的分配顺序为longs/doubles、ints、shorts/chars、bytes/booleans、oops(OrdinaryObject Pointers,OOPs),从以上默认的分配策略中可以看到,相同宽度的字段总是被分配到一起存放,在满足这个前提条件的情况下,在父类中定义的变量会出现在子类之前。

  • 对齐填充(Padding):

    该部分这并不是必然存在的,也没有特别的含义,它仅仅起着占位符的作用。

    由于HotSpot虚拟机的自动内存管理系统要求对象起始地址必须是8字节的整数倍,换句话说就是任何对象的大小都必须是8字节的整数倍。对象头部分已经被精心设计成正好是8字节的倍数(1倍或者2倍),因此,如果对象实例数据部分没有对齐的话,就需要通过对齐填充来补全。

对象创建、对象布局在堆内存设计之后,那么我们如果访问我们创建的对象呢?往下看。

2.3 对象的访问方式

创建对象自然是为了后续使用该对象,Java程序会通过栈上的reference数据来操作堆上的具体对象。

一般访问方式主要有使用句柄直接指针两种:

  • 句柄方式:

    如果使用句柄访问的话,Java堆中将可能会划分出一块内存来作为句柄池,reference中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类型数据各自具体的地址信息。

    使用句柄的优点是:reference中存储的是稳定句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实例数据指针,而reference本身不需要被修改。

  • 直接指针

    如果使用直接指针访问的话,Java堆中对象的内存布局就必须考虑如何放置访问类型数据的相关信息,reference中存储的直接就是对象地址,如果只是访问对象本身的话,就不需要多一次间接访问的开销。

    直接指针的优势:使用直接指针来访问最大的好处就是速度更快,它节省了一次指针定位的时间开销。

在Java JVM中,对象的访问不是通过直接指针方式,而是通过句柄方式。在Java中,对象的引用实际上是一个指向对象的句柄,而不是指向对象本身的指针。这个句柄包含了对象的地址,因此可以通过这个句柄来访问对象。这种方式的好处是可以避免指针的问题,例如空指针异常和野指针等问题。同时,这种方式也使得Java具有更好的可移植性,因为对象的句柄可以在不同的平台和架构上使用相同的方式来访问对象。

野指针:是指指向未知或无效内存地址的指针。在程序中,当指针变量没有被初始化或者指向的内存已经被释放或者回收,但指针变量仍然保持原来的值,这时就会出现野指针。当程序试图使用野指针时,就会导致程序崩溃或者产生不可预测的行为。野指针通常是由于程序员的错误或者不当的内存管理导致的。在Java中,由于采用了句柄方式来访问对象,因此不存在野指针的问题。

相关推荐
毕设源码-赖学姐5 分钟前
【开题答辩全过程】以 基于Springboot的智慧养老系统的设计与实现为例,包含答辩的问题和答案
java·spring boot·后端
jamesge20107 分钟前
限流之漏桶算法
java·开发语言·算法
jvstar8 分钟前
JAVA面试题和答案
java
冷雨夜中漫步9 分钟前
OpenAPITools使用——FAQ
android·java·缓存
9坐会得自创14 分钟前
使用marked将markdown渲染成HTML的基本操作
java·前端·html
Hello.Reader35 分钟前
Flink ML 线性 SVM(Linear SVC)入门输入输出列、训练参数与 Java 示例解读
java·支持向量机·flink
oioihoii35 分钟前
C++数据竞争与无锁编程
java·开发语言·c++
最贪吃的虎35 分钟前
什么是开源?小白如何快速学会开源协作流程并参与项目
java·前端·后端·开源
资生算法程序员_畅想家_剑魔36 分钟前
Java常见技术分享-16-多线程安全-并发编程的核心问题
java·开发语言
We....36 分钟前
Java SPI 机制
java·开发语言