【了解机器学习的定义与发展历程】

曾梦想执剑走天涯,我是程序猿【AK】

目录

简述概要

了解机器学习的定义与发展历程

知识图谱

机器学习(Machine Learning,ML)是一门跨学科的学科,它使用计算机模拟或实现人类学习行为,通过不断地获取新的知识和技能,重新组织已有的知识结构,从而提高自身的性能。简单来说,机器学习就是让计算机从数据中学习规律,并根据这些规律对未来数据进行预测。

机器学习的发展历程可以追溯到上世纪50年代,当时图灵测试的提出和塞缪尔开发的西洋跳棋程序标志着机器学习正式进入发展期。然而,在60年代中到70年代末,机器学习的发展几乎停滞不前。直到80年代,使用神经网络反向传播(BP)算法训练的多参数线性规划(MLP)理念的提出,才将机器学习带入复兴时期。90年代,提出的"决策树"(ID3算法)和后来的支持向量机(SVM)算法,将机器学习从知识驱动转变为数据驱动的思路。

进入21世纪初,Hinton提出了深度学习(Deep Learning)的概念,使得机器学习研究再次进入蓬勃发展期。从2012年开始,随着计算能力的提升和海量训练样本的支持,深度学习成为机器学习研究的热点,并带动了产业界的广泛应用。目前,机器学习已经成为人工智能领域中最具影响力和发展潜力的方向之一,被广泛应用于图像识别、语音识别、自然语言处理、推荐系统、金融风控等各个领域。

机器学习的基本过程包括数据预处理、特征提取、模型训练、评估和调整等步骤。其中,数据预处理是指对原始数据进行清洗、去噪、转换等操作,以便于后续的模型训练;特征提取是指从原始数据中提取出对模型训练有用的信息;模型训练是指使用训练数据对模型进行训练,以得到最优的参数;评估和调整是指使用测试数据对模型进行评估,并根据评估结果对模型进行调整,以提高模型的性能。

机器学习的分类方法有很多种,按照学习模式的不同,可以分为监督学习、半监督学习、无监督学习和强化学习等。其中,监督学习是指从有标签的训练数据中学习模型,并对新数据进行预测;半监督学习是指利用少量标注数据和大量无标注数据进行学习的模式;无监督学习是指从无标签的数据中学习数据的结构和特征;强化学习是指通过与环境的交互来学习最优策略。

总之,机器学习是一门重要的交叉学科,它使用计算机模拟或实现人类学习行为,通过不断地获取新的知识和技能,重新组织已有的知识结构,从而提高自身的性能。随着计算能力的提升和海量数据的支持,机器学习将会在更多领域得到应用和发展。

---- 永不磨灭的番号:我是AK

相关推荐
wjykp2 分钟前
part 3神经网络的学习
人工智能·神经网络·学习
core51210 分钟前
【硬核测评】Gemini 3 编程能力全面进化:不仅仅是 Copilot,更是你的 AI 架构师
人工智能·编程·copilot
jieshenai12 分钟前
llamafactory SFT 从断点恢复训练
人工智能
Jerryhut12 分钟前
sklearn函数总结九— 朴素贝叶斯
机器学习·scikit-learn·概率论·sklearn
微风企15 分钟前
杭州上城区CID青年企业家创新学院启航!微风企助力AI建设与青年创业成长
人工智能
chataipaper00215 分钟前
10款免费降ai率工具合集,轻松搞定论文降AIGC!【2025学姐亲测】
人工智能·深度学习·aigc·降ai·论文ai率
一见已难忘16 分钟前
昇腾加持下的Llama 3.2:开源大模型推理性能1B英文原版与3B中文微调模型实测对比
人工智能·开源·llama·gitcode·昇腾
CV-杨帆18 分钟前
使用LLaMA-Factory微调训练Qwen2-VL-7B/Qwen2.5-VL-7B/Qwen3-VL-2B与视觉大模型数据集制作流程与训练评估
人工智能
stjiejieto18 分钟前
AI 生成内容(AIGC)版权归属引争议:创作者、平台、AI 公司,谁该拥有 “作品权”?
人工智能·aigc
网安入门学习19 分钟前
2025年AIGC人才需求报告:从招聘数据看行业趋势与技能要求
人工智能·windows·ai作画·stable diffusion·aigc