matlab实现贪婪算法

下面是一个简单的 MATLAB 实现贪婪算法的示例,以解决旅行推销员问题(TSP)为例:

function [min_path, min_dist] = greedy_tsp(dist_matrix)

% 输入参数:距离矩阵 dist_matrix,表示城市之间的距离

% 输出结果:最短路径 min_path 和最小距离 min_dist

num_cities = size(dist_matrix, 1);

visited = zeros(1, num_cities); % 记录城市是否被访问

min_path = zeros(1, num_cities); % 记录最短路径

min_dist = 0; % 记录最小距离

% 从第一个城市出发

current_city = 1;

visited(current_city) = 1;

min_path(1) = current_city;

% 依次访问每个城市

for i = 2:num_cities

min_next_dist = Inf; % 初始化下一个最小距离为无穷大

next_city = -1; % 初始化下一个城市编号为-1

% 找到下一个最近的未访问城市

for j = 1:num_cities

if visited(j) == 0 && dist_matrix(current_city, j) < min_next_dist

min_next_dist = dist_matrix(current_city, j);

next_city = j;

end

end

% 更新最短路径和最小距离

min_path(i) = next_city;

min_dist = min_dist + min_next_dist;

% 标记当前城市为已访问

visited(next_city) = 1;

current_city = next_city;

end

% 回到起点城市

min_dist = min_dist + dist_matrix(min_path(end), min_path(1));

min_path(end) = min_path(1);

end

使用该函数可以计算出旅行推销员问题的最短路径和最小距离。下面是一个简单的示例:

% 生成随机距离矩阵(假设有5个城市)

num_cities = 5;

dist_matrix = randi([1, 10], num_cities, num_cities);

% 对称化距离矩阵

dist_matrix = triu(dist_matrix) + triu(dist_matrix, 1)';

% 计算最短路径和最小距离

min_path, min_dist\] = greedy_tsp(dist_matrix); % 显示结果 disp('最短路径:'); disp(min_path); fprintf('最小距离: %f\\n', min_dist); **运行上述代码,将得到最短路径和最小距离的结果。请注意,由于贪婪算法的局限性,得到的结果可能并不是全局最优解,但通常能够得到一个接近最优解的解决方案。**

相关推荐
小龙报3 分钟前
《算法通关指南数据结构和算法篇(2)--- 链表专题》
c语言·数据结构·c++·算法·链表·学习方法·visual studio
BINGCHN4 分钟前
NSSCTF每日一练 SWPUCTF2021 include--web
android·前端·android studio
艾莉丝努力练剑23 分钟前
【优选算法必刷100题】第031~32题(前缀和算法):连续数组、矩阵区域和
大数据·人工智能·线性代数·算法·矩阵·二维前缀和
醉颜凉25 分钟前
环形房屋如何 “安全劫舍”?动态规划解题逻辑与技巧
c语言·算法·动态规划
大雨淅淅28 分钟前
一文搞懂动态规划:从入门到精通
算法·动态规划
不去幼儿园30 分钟前
【启发式算法】灰狼优化算法(Grey Wolf Optimizer, GWO)详细介绍(Python)
人工智能·python·算法·机器学习·启发式算法
随意起个昵称31 分钟前
【二分】洛谷P2920,P2985做题小记
c++·算法
Z***u65937 分钟前
前端性能测试实践
前端
没书读了37 分钟前
计算机组成原理-考前记忆清单
线性代数·算法
xhxxx40 分钟前
prototype 是遗产,proto 是族谱:一文吃透 JS 原型链
前端·javascript