matlab实现贪婪算法

下面是一个简单的 MATLAB 实现贪婪算法的示例,以解决旅行推销员问题(TSP)为例:

function [min_path, min_dist] = greedy_tsp(dist_matrix)

% 输入参数:距离矩阵 dist_matrix,表示城市之间的距离

% 输出结果:最短路径 min_path 和最小距离 min_dist

num_cities = size(dist_matrix, 1);

visited = zeros(1, num_cities); % 记录城市是否被访问

min_path = zeros(1, num_cities); % 记录最短路径

min_dist = 0; % 记录最小距离

% 从第一个城市出发

current_city = 1;

visited(current_city) = 1;

min_path(1) = current_city;

% 依次访问每个城市

for i = 2:num_cities

min_next_dist = Inf; % 初始化下一个最小距离为无穷大

next_city = -1; % 初始化下一个城市编号为-1

% 找到下一个最近的未访问城市

for j = 1:num_cities

if visited(j) == 0 && dist_matrix(current_city, j) < min_next_dist

min_next_dist = dist_matrix(current_city, j);

next_city = j;

end

end

% 更新最短路径和最小距离

min_path(i) = next_city;

min_dist = min_dist + min_next_dist;

% 标记当前城市为已访问

visited(next_city) = 1;

current_city = next_city;

end

% 回到起点城市

min_dist = min_dist + dist_matrix(min_path(end), min_path(1));

min_path(end) = min_path(1);

end

使用该函数可以计算出旅行推销员问题的最短路径和最小距离。下面是一个简单的示例:

% 生成随机距离矩阵(假设有5个城市)

num_cities = 5;

dist_matrix = randi([1, 10], num_cities, num_cities);

% 对称化距离矩阵

dist_matrix = triu(dist_matrix) + triu(dist_matrix, 1)';

% 计算最短路径和最小距离

min_path, min_dist\] = greedy_tsp(dist_matrix); % 显示结果 disp('最短路径:'); disp(min_path); fprintf('最小距离: %f\\n', min_dist); **运行上述代码,将得到最短路径和最小距离的结果。请注意,由于贪婪算法的局限性,得到的结果可能并不是全局最优解,但通常能够得到一个接近最优解的解决方案。**

相关推荐
派大星爱吃猫几秒前
快速排序和交换排序详解(含三路划分)
算法·排序算法·快速排序·三路划分
焜昱错眩..6 分钟前
代码随想录第四十八天|1143.最长公共子序列 1035.不相交的线 53. 最大子序和 392.判断子序列
算法·动态规划
Promise5209 分钟前
用油猴脚本实现用户身份快速切换
前端·javascript
玲玲51210 分钟前
vue3组件通信:defineEmits和defineModel
前端
温柔532916 分钟前
仓颉语言异常捕获机制深度解析
java·服务器·前端
温宇飞24 分钟前
ECS 系统的一种简单 TS 实现
前端
shenshizhong26 分钟前
鸿蒙HDF框架源码分析
前端·源码·harmonyos
凌晨起床34 分钟前
Vue3 对比 Vue2
前端·javascript
AI妈妈手把手34 分钟前
YOLO V2全面解析:更快、更准、更强大的目标检测算法
人工智能·算法·yolo·目标检测·计算机视觉·yolo v2
极客智造38 分钟前
编程世界的内在逻辑:深入探索数据结构、算法复杂度与抽象数据类型
数据结构·算法·数学建模