matlab实现贪婪算法

下面是一个简单的 MATLAB 实现贪婪算法的示例,以解决旅行推销员问题(TSP)为例:

function [min_path, min_dist] = greedy_tsp(dist_matrix)

% 输入参数:距离矩阵 dist_matrix,表示城市之间的距离

% 输出结果:最短路径 min_path 和最小距离 min_dist

num_cities = size(dist_matrix, 1);

visited = zeros(1, num_cities); % 记录城市是否被访问

min_path = zeros(1, num_cities); % 记录最短路径

min_dist = 0; % 记录最小距离

% 从第一个城市出发

current_city = 1;

visited(current_city) = 1;

min_path(1) = current_city;

% 依次访问每个城市

for i = 2:num_cities

min_next_dist = Inf; % 初始化下一个最小距离为无穷大

next_city = -1; % 初始化下一个城市编号为-1

% 找到下一个最近的未访问城市

for j = 1:num_cities

if visited(j) == 0 && dist_matrix(current_city, j) < min_next_dist

min_next_dist = dist_matrix(current_city, j);

next_city = j;

end

end

% 更新最短路径和最小距离

min_path(i) = next_city;

min_dist = min_dist + min_next_dist;

% 标记当前城市为已访问

visited(next_city) = 1;

current_city = next_city;

end

% 回到起点城市

min_dist = min_dist + dist_matrix(min_path(end), min_path(1));

min_path(end) = min_path(1);

end

使用该函数可以计算出旅行推销员问题的最短路径和最小距离。下面是一个简单的示例:

% 生成随机距离矩阵(假设有5个城市)

num_cities = 5;

dist_matrix = randi([1, 10], num_cities, num_cities);

% 对称化距离矩阵

dist_matrix = triu(dist_matrix) + triu(dist_matrix, 1)';

% 计算最短路径和最小距离

min_path, min_dist\] = greedy_tsp(dist_matrix); % 显示结果 disp('最短路径:'); disp(min_path); fprintf('最小距离: %f\\n', min_dist); **运行上述代码,将得到最短路径和最小距离的结果。请注意,由于贪婪算法的局限性,得到的结果可能并不是全局最优解,但通常能够得到一个接近最优解的解决方案。**

相关推荐
mCell6 小时前
如何零成本搭建个人站点
前端·程序员·github
mCell7 小时前
为什么 Memo Code 先做 CLI:以及终端输入框到底有多难搞
前端·设计模式·agent
恋猫de小郭7 小时前
AI 在提高你工作效率的同时,也一直在增加你的疲惫和焦虑
前端·人工智能·ai编程
寻寻觅觅☆7 小时前
东华OJ-基础题-106-大整数相加(C++)
开发语言·c++·算法
少云清7 小时前
【安全测试】2_客户端脚本安全测试 _XSS和CSRF
前端·xss·csrf
银烛木7 小时前
黑马程序员前端h5+css3
前端·css·css3
m0_607076607 小时前
CSS3 转换,快手前端面试经验,隔壁都馋哭了
前端·面试·css3
听海边涛声7 小时前
CSS3 图片模糊处理
前端·css·css3
IT、木易7 小时前
css3 backdrop-filter 在移动端 Safari 上导致渲染性能急剧下降的优化方案有哪些?
前端·css3·safari
偷吃的耗子7 小时前
【CNN算法理解】:三、AlexNet 训练模块(附代码)
深度学习·算法·cnn