深度学习介绍与环境搭建

深度学习介绍与环境搭建

复制代码
慕课大学人工智能学习笔记,自己学习记录用的。(赋上连接)
https://www.icourse163.org/learn/ZUCC-1206146808?tid=1471365447#/learn/content?type=detail&id=1256424053&cid=1289366515

人工智能、机器学习与深度学习的关系

机器学习
  • 机器学习是人工智能的一个分支,它是实现人工智能的一个核心技术,即以机器学习为手段解决人工智能中的问题
  • 机器学习是通过一些让计算机可以自动学习的算法,并从数据中分析获得规律,然后利用规律对新样本进行预测
  • 机器学习的形式化的描述:对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么就称这个计算机程序在从经验E学习。
机器学习的学习形式分类
  • 有监督学习指的是事先要准备好输入与正确输出(区分方法)相配套的训练数据,让计算机进行学习,以便当他被输入某个数据是能够得到正确的输出(区分方法)。
  • 无监督学习的目的是让计算机自己去学习怎样做一些事情,所有数据只有特征没有标记。无监督学习备孕用与仅提供输入用数据、需要计算机自己找出数据内在结构的场合。其目的是让计算机从数据中抽取其中所包含的模式及规则。
  • 半监督学习,二者的中间地带是半监督学习,对于半监督学习,其训练数据一部分有标记,另一部分没有标记,而没有标记数据的数量尝尝极大与有标记数据的数量。它的基本规律是:数据的分部必然不是完全随机的,通过结合有标记数据的局部特征,以及大量没标记数据的整体分部,可以得道比较好的分类结果。
  • 强化学习,是解决计算机从感知到决策控制的问题,从而实现通用人工智能。强化学习是目标导向的,从白纸一张的状态开始,经由许多个步骤来实现某一维度上的目标最大化。最简单的理解是在训练过程中,不断去尝试,错误就惩罚,正确就奖励,由此训练得到的模型在各个状态环境中都最好。对强化学习来说,它虽然没有标记,但有一个延迟奖励与训练相关,通过学习过程中的激励函数获得某种从状态到行动的映射,强化学习强调如何基于环境而行动,以取得最大化的预期利益。强化学习一般在游戏、下期等需要连续决策的领域。
无监督机器学习的典型应用模式
有监督机器学习的典型应用模式


深度学习



全连接网络:指的是Layer1层的节点和后一层全都有连接。

常见的激活函数

深度神经网络

复制代码
如果有层数、节点越多神经网络能力越强。
卷积神经网络CNN
复制代码
卷积神经网络是深度学习中最重要的概念之一
20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现,其独特的网络结构可以有效降低神经网络的复杂性。
1998年,Yann LeCun提出了LeNet神经网络,标志着第一个采用卷积思想的神经网络面世。







深度学习技术存在的问题:

  • 面向任务单一
  • 依赖于大规模有标签数据
  • 几乎是个黑箱模型,可解释性不强
    无监督的深度学习、迁移说戏、深度强化学习和贝叶斯深度学习等受关注
    深度学习具有很好的可推广性和应用性,但不是人工智能的全部,未来人工智能需要有更多类似技术。

深度学习框架


相关推荐
Aaron15884 分钟前
基于VU13P在人工智能高速接口传输上的应用浅析
人工智能·算法·fpga开发·硬件架构·信息与通信·信号处理·基带工程
予枫的编程笔记6 分钟前
【论文解读】DLF:以语言为核心的多模态情感分析新范式 (AAAI 2025)
人工智能·python·算法·机器学习
HyperAI超神经10 分钟前
完整回放|上海创智/TileAI/华为/先进编译实验室/AI9Stars深度拆解 AI 编译器技术实践
人工智能·深度学习·机器学习·开源
大模型真好玩10 分钟前
LangGraph智能体开发设计模式(四)——LangGraph多智能体设计模式:网络架构
人工智能·langchain·agent
北辰alk13 分钟前
RAG嵌入模型选择全攻略:从理论到代码实战
人工智能
Smoothzjc16 分钟前
👉 求你了,别再裸写 fetch 做 AI 流式响应了!90% 的人都在踩这个坑
前端·人工智能·后端
沛沛老爹16 分钟前
Web开发者进阶AI:Agent技能设计模式之迭代分析与上下文聚合实战
前端·人工智能·设计模式
创作者mateo16 分钟前
PyTorch 入门笔记配套【完整练习代码】
人工智能·pytorch·笔记
用户51914958484520 分钟前
揭秘CVE-2025-47227:ScriptCase高危漏洞自动化利用与分析工具
人工智能·aigc