图片数据增强

数据增强

数据增强脚本

  1. 随机上下镜像
  2. 随机左右镜像
  3. 随机左右旋转45度以内
  4. 随机裁剪
  5. 随机透视变换,拉伸(未实现)
  6. 随机平移
python 复制代码
import os, cv2, shutil
from glob import glob
import random
import sys
from tqdm import tqdm
import random
import numpy as np


# 1. 加载图片路径
def load_files(path):
    files = glob("{}/*".format(path))
    # files= os.listdir(path)
    random.shuffle(files)
    return files


# 3. 检查增强目录是否存在,存在就删除,然后重新生成
def mkdir(path):
    if os.path.exists(path):
        shutil.rmtree(path)
    os.mkdir(path)


class Image:
    def __init__(self, image_path):
        self.src = image_path  # 原始图像
        self.cv2_image = None
        self.filename = os.path.basename(image_path)
        self.__init()
        self.generate_aug_name()
        self.is_aug = False

    def __init(self):
        """ load image"""
        if not os.path.exists(self.src):
            print("image_src = {}".format(self.src))
            print("-----------------------------------------------------")
            print("------------ [IMG] file_dot't exist, exit -----------")
            print("-----------------------------------------------------")
            sys.exit(0)
        try:
            self.cv2_image = cv2.imread(self.src)
        except:
            print("image error", self.src)
            os.remove(self.src)

    def generate_aug_name(self):
        """ 生成增强后保存图片的名称 """
        self.aug_name = self.filename.split(".")[0] + "_aug." + self.filename.split(".")[-1]
        # print(self.aug_name)


""" 数据增强 """


# 1. 随机上下镜像
# 2. 随机左右镜像
# 3. 随机左右旋转45度以内
# 4. 随机裁剪
# 5. 随机透视变换,拉伸
# 6. 随机平移
class ImageAugmentation:
    def __init__(self, image_path, flip_prob=0.5, revolve=None, crop=None, translate_prob=0.5):
        """
        数据增强参数
        :param image_path: 图片路径
        :param flip_prob: 图片镜像概率
        :param revolve: 图片旋转参数,旋转方向随机 [旋转概率,旋转最大角度]
        :param crop: 图片裁剪参数,[裁剪概率,裁剪比率]
        :param translate_prob: 图片平移参数概率,方向随机,左右和上下
        """
        if revolve is None:
            revolve = [0.5, 15]
        if crop is None:
            crop = [0.5, 0.75]
        self.image_path = image_path
        self.flip_prob = flip_prob
        self.revolve_prob = revolve[0]
        self.revolve_angle = revolve[1]
        self.crop_prob = crop[0]
        self.crop_rate = crop[1]
        self.translate_prob = translate_prob
        self.__init()
        self.file_list = load_files(self.image_path)

    def __init(self):
        self.aug_path = self.image_path + "_aug"
        mkdir(self.aug_path)

    def flip(self, image):
        """
        随机镜像图片
        :param image:
        :return:
        """
        image.is_aug = True
        flip_type = random.randint(1, 3)
        if flip_type == 1:
            image.cv2_image = cv2.flip(image.cv2_image, 0)
        elif flip_type == 2:
            image.cv2_image = cv2.flip(image.cv2_image, 1)
        else:
            image.cv2_image = cv2.flip(image.cv2_image, -1)

    def revolve(self, image):
        image.is_aug = True
        revolve_type = random.randint(1, 2)
        revolve_angle = random.randint(1, self.revolve_angle)
        if revolve_type == 1:
            revolve_angle = -revolve_angle
        # dividing height and width by 2 to get the center of the image
        height, width = image.cv2_image.shape[:2]
        # get the center coordinates of the image to create the 2D rotation matrix
        center = (width / 2, height / 2)
        # using cv2.getRotationMatrix2D() to get the rotation matrix
        rotate_matrix = cv2.getRotationMatrix2D(center=center, angle=revolve_angle, scale=1)
        image.cv2_image = cv2.warpAffine(src=image.cv2_image, M=rotate_matrix, dsize=(width, height))

    def crop(self, image):
        image.is_aug = True
        min_rate = int(self.crop_rate * 100)
        rate = random.randint(min_rate, 100) * 0.01
        height, width = image.cv2_image.shape[:2]
        center = (width / 2, height / 2)
        crop_height = int(height * rate)
        crop_width = int(width * rate)
        left = int((width - crop_width) / 2)
        top = int((height - crop_height) / 2)
        right = left + crop_width
        bottom = top + crop_height

        image.cv2_image = image.cv2_image[left:right, top:bottom]

    def translate(self, image):
        image.is_aug = True
        height, width = image.cv2_image.shape[:2]
        """ 随机平移类型(上下左右) """
        translate_type = random.randint(1, 4)
        translate_x = 0
        translate_y = 0
        translate_length_radio = random.randint(1, 33) * 0.01

        # print(translate_type)
        if translate_type == 1:
            """ 图片右移 """
            translate_x = width * translate_length_radio
        elif translate_type == 2:
            """ 图片左移 """
            translate_x = - (width * translate_length_radio)
        elif translate_type == 3:
            """ 图片下移 """
            translate_y = height * translate_length_radio
        elif translate_type == 4:
            """ 图片上移 """
            translate_y = - (height * translate_length_radio)
        else:
            print("[error] 不符合要求的随机数")
            raise TypeError

        M = np.float32([[1, 0, translate_x], [0, 1, translate_y]])
        image.cv2_image = cv2.warpAffine(image.cv2_image, M, (width, height))

    def run(self):
        for file in tqdm(self.file_list):
            img = Image(file)
            # 随机镜像图片
            flip_prob = random.random()
            if flip_prob >= self.flip_prob:
                self.flip(img)
            # 随机旋转图片
            revolve_prob = random.random()
            if revolve_prob >= self.revolve_prob:
                self.revolve(img)
            # 随机裁剪图片
            crop_prob = random.random()
            if crop_prob >= self.crop_prob:
                self.crop(img)
            translate_prob = random.random()
            if translate_prob >= self.translate_prob:
                self.translate(img)

            # save image
            if img.is_aug:
                cv2.imwrite(os.path.join(self.aug_path, img.aug_name), img.cv2_image)


test_path = r"D:\user\code\python\data_process\aug"
if __name__ == '__main__':
    """
   数据增强参数
   :param image_path: 图片路径
   :param flip_prob: 图片镜像概率
   :param revolve: 图片旋转参数,旋转方向随机 [旋转概率,旋转最大角度]
   :param crop: 图片裁剪参数,[裁剪概率,裁剪比率]
   :param translate_prob: 图片平移参数概率,方向随机,左右和上下
   """
    aug = ImageAugmentation(test_path, flip_prob=0.4, revolve=[0.4, 30], crop=[0.3, 0.85], translate_prob=0.4)
    aug.run()
相关推荐
如何原谅奋力过但无声4 分钟前
TensorFlow 1.x常用函数总结(持续更新)
人工智能·python·tensorflow
翔云 OCR API7 分钟前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr
AndrewHZ1 小时前
【图像处理基石】如何在图像中提取出基本形状,比如圆形,椭圆,方形等等?
图像处理·python·算法·计算机视觉·cv·形状提取
温轻舟2 小时前
Python自动办公工具05-Word表中相同内容的单元格自动合并
开发语言·python·word·自动化办公·温轻舟
习习.y3 小时前
python笔记梳理以及一些题目整理
开发语言·笔记·python
撸码猿3 小时前
《Python AI入门》第10章 拥抱AIGC——OpenAI API调用与Prompt工程实战
人工智能·python·aigc
qq_386218993 小时前
Gemini生成的自动搜索和下载论文的python脚本
开发语言·python
vx_vxbs664 小时前
【SSM电影网站】(免费领源码+演示录像)|可做计算机毕设Java、Python、PHP、小程序APP、C#、爬虫大数据、单片机、文案
java·spring boot·python·mysql·小程序·php·idea
音视频牛哥5 小时前
轻量级RTSP服务的工程化设计与应用:从移动端到边缘设备的实时媒体架构
人工智能·计算机视觉·音视频·音视频开发·rtsp播放器·安卓rtsp服务器·安卓实现ipc功能
烤汉堡5 小时前
Python入门到实战:post请求+cookie+代理
爬虫·python