数据分析(二)自动生成分析报告

1. 报告生成思路概述

怎么快速一份简单的数据分析报告,注意这个报告的特点:

--网页版,可以支持在线观看或者分享HTML文件

--标题,动图,原始数据应有尽有

--支持交互,比如plotly交互画面,数据支持filter等

--各种展现方式,数字仪表盘,动图,数据表格,描述性文字等(音频,视频)

--以上报告没有写一行前端代码,完全自动生成。

--在数据分析的基础上,创建,生成,发布报告的时间大约2分钟

2. 报告生成步骤

--先安装datapane包(可以帮我们把我们上面的素材整合成一份网页报告,整合的函数就是Report):pip install datapane

--创建报告内容:比如原始数据df,动图fig1 和fig2

import plotly.express as px

df = px.data.gapminder()

fig = px.scatter(df, x="gdpPercap", y="lifeExp", animation_frame="year", animation_group="country", size="pop", color="continent", hover_name="country", log_x=True, size_max=55, range_x=[100,100000], range_y=[25,90],height=800)

fig2 = px.bar(df, x="continent", y="pop", color="continent", animation_frame="year", animation_group="country", range_y=[0,4000000000],height=800)

--利用datapane整合报告:上面的报告里面,fig采用Plot来生成报告,df采用DataTable生成报告,还有标题,数字仪表也是类似的方式生成。

import datapane as dp

report = dp.Report(

"# GDP分析报告",

"## 公众号:数据如琥珀",

dp.Group(dp.BigNumber(heading="中国", value=2),

dp.BigNumber(heading="GDP", value="17.7万亿"),columns=2,),

dp.Group(dp.Plot(fig, caption="GDP增长动画"),

dp.Plot(fig2, caption="GDP柱形图"),columns=2),

dp.DataTable(df, caption="原始数据"),

)

--生成html文件,save到本地:

report.save(path='report.html', open=True, formatting=dp.ReportFormatting(width=dp.ReportWidth.FULL))

3. 完整代码(code)

复制代码
import plotly.express as px
import datapane as dp

df = px.data.gapminder()
fig = px.scatter(df, x="gdpPercap", y="lifeExp", animation_frame="year", animation_group="country",
                 size="pop", color="continent", hover_name="country",
                 log_x=True, size_max=55, range_x=[100, 20000], range_y=[25, 90], height=600)
fig2 = px.bar(df, x="continent", y="pop", color="continent", animation_frame="year", animation_group="country",
              range_y=[0, 1500000000], height=600)
report = dp.Report("# GDP分析报告", "##  title:数据分析二",
                   dp.Group(dp.BigNumber(heading="中国", value=2),
                            dp.BigNumber(heading="GDP", value="17.7万亿"), columns=2, ),
                   dp.Group(dp.Plot(fig, caption="GDP增长动画"),
                            dp.Plot(fig2, caption="GDP柱形图"), columns=2),
                   dp.DataTable(df, caption="原始数据"),
                   )
report.save(path='report.html', open=True, formatting=dp.Formatting(width=dp.Width.FULL))
相关推荐
大千AI助手5 小时前
Hoeffding树:数据流挖掘中的高效分类算法详解
人工智能·机器学习·分类·数据挖掘·流数据··hoeffding树
大千AI助手5 小时前
独热编码:分类数据处理的基石技术
人工智能·机器学习·分类·数据挖掘·特征工程·one-hot·独热编码
没有梦想的咸鱼185-1037-16637 小时前
AI Agent结合机器学习与深度学习在全球气候变化驱动因素预测中的应用
人工智能·python·深度学习·机器学习·chatgpt·数据分析
白鲸开源11 小时前
(二)从分层架构到数据湖仓架构:数据仓库分层下的技术架构与举例
大数据·数据库·数据分析
阿里云大数据AI技术12 小时前
云栖实录 | 理想汽车基于 Hologres + Flink 构建万亿级车联网信号实时分析平台
数据分析·flink
十三画者17 小时前
【文献分享】acmgscaler:用于在 ACMG/AMP 框架内对基因层面的变异效应得分进行标准化校准。
数据挖掘·数据分析·r语言
言德斐20 小时前
数据挖掘知识体系分析
人工智能·数据挖掘
nju_spy20 小时前
复杂结构数据挖掘(三)关联规则挖掘实验
人工智能·数据挖掘·apriori·网格搜索·关联规则挖掘·fp-growth·位运算状态枚举
码界筑梦坊20 小时前
74-基于Python的蜜雪冰城门店数据可视化分析系统
python·数据分析·flask·毕业设计
Theodore_10221 天前
机器学习(6)特征工程与多项式回归
深度学习·算法·机器学习·数据分析·多项式回归