数据分析(二)自动生成分析报告

1. 报告生成思路概述

怎么快速一份简单的数据分析报告,注意这个报告的特点:

--网页版,可以支持在线观看或者分享HTML文件

--标题,动图,原始数据应有尽有

--支持交互,比如plotly交互画面,数据支持filter等

--各种展现方式,数字仪表盘,动图,数据表格,描述性文字等(音频,视频)

--以上报告没有写一行前端代码,完全自动生成。

--在数据分析的基础上,创建,生成,发布报告的时间大约2分钟

2. 报告生成步骤

--先安装datapane包(可以帮我们把我们上面的素材整合成一份网页报告,整合的函数就是Report):pip install datapane

--创建报告内容:比如原始数据df,动图fig1 和fig2

import plotly.express as px

df = px.data.gapminder()

fig = px.scatter(df, x="gdpPercap", y="lifeExp", animation_frame="year", animation_group="country", size="pop", color="continent", hover_name="country", log_x=True, size_max=55, range_x=[100,100000], range_y=[25,90],height=800)

fig2 = px.bar(df, x="continent", y="pop", color="continent", animation_frame="year", animation_group="country", range_y=[0,4000000000],height=800)

--利用datapane整合报告:上面的报告里面,fig采用Plot来生成报告,df采用DataTable生成报告,还有标题,数字仪表也是类似的方式生成。

import datapane as dp

report = dp.Report(

"# GDP分析报告",

"## 公众号:数据如琥珀",

dp.Group(dp.BigNumber(heading="中国", value=2),

dp.BigNumber(heading="GDP", value="17.7万亿"),columns=2,),

dp.Group(dp.Plot(fig, caption="GDP增长动画"),

dp.Plot(fig2, caption="GDP柱形图"),columns=2),

dp.DataTable(df, caption="原始数据"),

)

--生成html文件,save到本地:

report.save(path='report.html', open=True, formatting=dp.ReportFormatting(width=dp.ReportWidth.FULL))

3. 完整代码(code)

import plotly.express as px
import datapane as dp

df = px.data.gapminder()
fig = px.scatter(df, x="gdpPercap", y="lifeExp", animation_frame="year", animation_group="country",
                 size="pop", color="continent", hover_name="country",
                 log_x=True, size_max=55, range_x=[100, 20000], range_y=[25, 90], height=600)
fig2 = px.bar(df, x="continent", y="pop", color="continent", animation_frame="year", animation_group="country",
              range_y=[0, 1500000000], height=600)
report = dp.Report("# GDP分析报告", "##  title:数据分析二",
                   dp.Group(dp.BigNumber(heading="中国", value=2),
                            dp.BigNumber(heading="GDP", value="17.7万亿"), columns=2, ),
                   dp.Group(dp.Plot(fig, caption="GDP增长动画"),
                            dp.Plot(fig2, caption="GDP柱形图"), columns=2),
                   dp.DataTable(df, caption="原始数据"),
                   )
report.save(path='report.html', open=True, formatting=dp.Formatting(width=dp.Width.FULL))
相关推荐
dreadp6 小时前
解锁豆瓣高清海报(二) 使用 OpenCV 拼接和压缩
图像处理·python·opencv·计算机视觉·数据分析
struggle202511 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习
AIGC大时代12 小时前
对比DeepSeek、ChatGPT和Kimi的学术写作关键词提取能力
论文阅读·人工智能·chatgpt·数据分析·prompt
东方佑17 小时前
OpenAI承认开源策略错误,考虑调整策略并推出o3-mini模型
开发语言·数据分析
kaiyuanheshang19 小时前
数据挖掘常用算法
人工智能·算法·数据挖掘
程序猿阿伟20 小时前
《数据可视化新高度:Graphy的AI协作变革》
人工智能·信息可视化·数据分析
遗落凡尘的萤火-生信小白1 天前
单细胞-第四节 多样本数据分析,下游画图
windows·数据挖掘·数据分析
纠结哥_Shrek2 天前
基于最近邻数据进行分类
人工智能·分类·数据挖掘
Melancholy 啊2 天前
细说机器学习算法之ROC曲线用于模型评估
人工智能·python·算法·机器学习·数据挖掘
一名技术极客2 天前
Python 数据分析 - Matplotlib 绘图
python·数据分析·matplotlib