数据分析(二)自动生成分析报告

1. 报告生成思路概述

怎么快速一份简单的数据分析报告,注意这个报告的特点:

--网页版,可以支持在线观看或者分享HTML文件

--标题,动图,原始数据应有尽有

--支持交互,比如plotly交互画面,数据支持filter等

--各种展现方式,数字仪表盘,动图,数据表格,描述性文字等(音频,视频)

--以上报告没有写一行前端代码,完全自动生成。

--在数据分析的基础上,创建,生成,发布报告的时间大约2分钟

2. 报告生成步骤

--先安装datapane包(可以帮我们把我们上面的素材整合成一份网页报告,整合的函数就是Report):pip install datapane

--创建报告内容:比如原始数据df,动图fig1 和fig2

import plotly.express as px

df = px.data.gapminder()

fig = px.scatter(df, x="gdpPercap", y="lifeExp", animation_frame="year", animation_group="country", size="pop", color="continent", hover_name="country", log_x=True, size_max=55, range_x=[100,100000], range_y=[25,90],height=800)

fig2 = px.bar(df, x="continent", y="pop", color="continent", animation_frame="year", animation_group="country", range_y=[0,4000000000],height=800)

--利用datapane整合报告:上面的报告里面,fig采用Plot来生成报告,df采用DataTable生成报告,还有标题,数字仪表也是类似的方式生成。

import datapane as dp

report = dp.Report(

"# GDP分析报告",

"## 公众号:数据如琥珀",

dp.Group(dp.BigNumber(heading="中国", value=2),

dp.BigNumber(heading="GDP", value="17.7万亿"),columns=2,),

dp.Group(dp.Plot(fig, caption="GDP增长动画"),

dp.Plot(fig2, caption="GDP柱形图"),columns=2),

dp.DataTable(df, caption="原始数据"),

)

--生成html文件,save到本地:

report.save(path='report.html', open=True, formatting=dp.ReportFormatting(width=dp.ReportWidth.FULL))

3. 完整代码(code)

复制代码
import plotly.express as px
import datapane as dp

df = px.data.gapminder()
fig = px.scatter(df, x="gdpPercap", y="lifeExp", animation_frame="year", animation_group="country",
                 size="pop", color="continent", hover_name="country",
                 log_x=True, size_max=55, range_x=[100, 20000], range_y=[25, 90], height=600)
fig2 = px.bar(df, x="continent", y="pop", color="continent", animation_frame="year", animation_group="country",
              range_y=[0, 1500000000], height=600)
report = dp.Report("# GDP分析报告", "##  title:数据分析二",
                   dp.Group(dp.BigNumber(heading="中国", value=2),
                            dp.BigNumber(heading="GDP", value="17.7万亿"), columns=2, ),
                   dp.Group(dp.Plot(fig, caption="GDP增长动画"),
                            dp.Plot(fig2, caption="GDP柱形图"), columns=2),
                   dp.DataTable(df, caption="原始数据"),
                   )
report.save(path='report.html', open=True, formatting=dp.Formatting(width=dp.Width.FULL))
相关推荐
胡耀超40 分钟前
从哲学(业务)视角看待数据挖掘:从认知到实践的螺旋上升
人工智能·python·数据挖掘·大模型·特征工程·crisp-dm螺旋认知·批判性思维
赴33513 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
专注API从业者16 小时前
基于 Flink 的淘宝实时数据管道设计:商品详情流式处理与异构存储
大数据·前端·数据库·数据挖掘·flink
淡酒交魂18 小时前
「Flink」业务搭建方法总结
大数据·数据挖掘·数据分析
TDengine (老段)18 小时前
TDengine IDMP 高级功能(4. 元素引用)
大数据·数据库·人工智能·物联网·数据分析·时序数据库·tdengine
计算机毕设定制辅导-无忧学长2 天前
Grafana 与 InfluxDB 可视化深度集成(二)
信息可视化·数据分析·grafana
Jina AI2 天前
回归C++: 在GGUF上构建高效的向量模型
人工智能·算法·机器学习·数据挖掘·回归
瓦特what?2 天前
关于C++的#include的超超超详细讲解
java·开发语言·数据结构·c++·算法·信息可视化·数据挖掘
鹏多多.2 天前
flutter-使用device_info_plus获取手机设备信息完整指南
android·前端·flutter·ios·数据分析·前端框架
芦骁骏3 天前
自动处理考勤表——如何使用Power Query,步步为营,一点点探索自定义函数
数据分析·excel·powerbi