数据分析(二)自动生成分析报告

1. 报告生成思路概述

怎么快速一份简单的数据分析报告,注意这个报告的特点:

--网页版,可以支持在线观看或者分享HTML文件

--标题,动图,原始数据应有尽有

--支持交互,比如plotly交互画面,数据支持filter等

--各种展现方式,数字仪表盘,动图,数据表格,描述性文字等(音频,视频)

--以上报告没有写一行前端代码,完全自动生成。

--在数据分析的基础上,创建,生成,发布报告的时间大约2分钟

2. 报告生成步骤

--先安装datapane包(可以帮我们把我们上面的素材整合成一份网页报告,整合的函数就是Report):pip install datapane

--创建报告内容:比如原始数据df,动图fig1 和fig2

import plotly.express as px

df = px.data.gapminder()

fig = px.scatter(df, x="gdpPercap", y="lifeExp", animation_frame="year", animation_group="country", size="pop", color="continent", hover_name="country", log_x=True, size_max=55, range_x=[100,100000], range_y=[25,90],height=800)

fig2 = px.bar(df, x="continent", y="pop", color="continent", animation_frame="year", animation_group="country", range_y=[0,4000000000],height=800)

--利用datapane整合报告:上面的报告里面,fig采用Plot来生成报告,df采用DataTable生成报告,还有标题,数字仪表也是类似的方式生成。

import datapane as dp

report = dp.Report(

"# GDP分析报告",

"## 公众号:数据如琥珀",

dp.Group(dp.BigNumber(heading="中国", value=2),

dp.BigNumber(heading="GDP", value="17.7万亿"),columns=2,),

dp.Group(dp.Plot(fig, caption="GDP增长动画"),

dp.Plot(fig2, caption="GDP柱形图"),columns=2),

dp.DataTable(df, caption="原始数据"),

)

--生成html文件,save到本地:

report.save(path='report.html', open=True, formatting=dp.ReportFormatting(width=dp.ReportWidth.FULL))

3. 完整代码(code)

复制代码
import plotly.express as px
import datapane as dp

df = px.data.gapminder()
fig = px.scatter(df, x="gdpPercap", y="lifeExp", animation_frame="year", animation_group="country",
                 size="pop", color="continent", hover_name="country",
                 log_x=True, size_max=55, range_x=[100, 20000], range_y=[25, 90], height=600)
fig2 = px.bar(df, x="continent", y="pop", color="continent", animation_frame="year", animation_group="country",
              range_y=[0, 1500000000], height=600)
report = dp.Report("# GDP分析报告", "##  title:数据分析二",
                   dp.Group(dp.BigNumber(heading="中国", value=2),
                            dp.BigNumber(heading="GDP", value="17.7万亿"), columns=2, ),
                   dp.Group(dp.Plot(fig, caption="GDP增长动画"),
                            dp.Plot(fig2, caption="GDP柱形图"), columns=2),
                   dp.DataTable(df, caption="原始数据"),
                   )
report.save(path='report.html', open=True, formatting=dp.Formatting(width=dp.Width.FULL))
相关推荐
2501_944934731 小时前
数据分析:汽车销售转型的职场跳板
数据挖掘·数据分析·汽车
ZCXZ12385296a1 小时前
基于YOLOv8-VanillaNet的章鱼图像中生物与非物体识别与分类
yolo·分类·数据挖掘
kisshuan123964 小时前
螺母螺纹智能识别与分类:基于YOLOv10n-GlobalEdgeInformationTransfer3的改进方案
yolo·分类·数据挖掘
辰阳星宇4 小时前
【工具调用】BFCL榜单数据分析
人工智能·数据挖掘·数据分析
Piar1231sdafa4 小时前
花生品质检测与分类 - 基于深度学习的农产品智能识别系统
深度学习·数据挖掘
wfeqhfxz25887825 小时前
花椒种植环境中的异物检测与分类:基于QueryInst模型的10类杂质识别
人工智能·分类·数据挖掘
Aloudata5 小时前
数据语义层 vs 宽表模式:哪种架构更适合 AI 时代的数据分析?
人工智能·架构·数据挖掘·数据分析·数据治理
wfeqhfxz25887825 小时前
基于YOLOv8和BIFPN的鹦鹉粪便智能检测与分类系统实现详解
yolo·分类·数据挖掘
renhongxia15 小时前
多模型协作定律:大型语言模型模型集成的缩放极限
人工智能·信息可视化·语言模型·自然语言处理·数据分析
q_35488851537 小时前
机器学习:python共享单车数据分析系统 可视化 Flask框架 单车数据 骑行数据 大数据 机器学习 计算机毕业设计✅
人工智能·python·机器学习·数据分析·flask·推荐算法·共享单车