(done) Positive Semidefinite Matrices 什么是半正定矩阵?如何证明一个矩阵是半正定矩阵? 可以使用特征值

参考视频:https://www.bilibili.com/video/BV1Vg41197ew/?vd_source=7a1a0bc74158c6993c7355c5490fc600

参考资料(半正定矩阵的定义):https://baike.baidu.com/item/半正定矩阵/2152711?fr=ge_ala


看看半正定矩阵的定义:

正定矩阵是 > 0,半正定矩阵是 >= 0

根据定义来看,半正定矩阵也有 "实对称矩阵" 的前提条件


或许我们可以考虑 半正定矩阵性质 和 "特征值特性" 之间的关系,证明方法可以参考之前 "正定矩阵的特征值特性" 的证明方法

首先大胆假设:半正定矩阵 <=> 特征值都 >= 0

那么,设 半正定矩阵 A

先试着证明 半正定矩阵 => 特征值都 >= 0:

  • 对于非零任意特征向量 x, x' A x = x' (lamda) x = (lamda) x'x >= 0
  • 由于特征向量 x 是非零向量,所以 (lamda) >= 0 (可以为 0)
  • 这个方向证明完毕

再试着证明 特征值都 >= 0 ===> 半正定矩阵

  • 对于任意一个非零向量 x,x' A x = x' Q' (hat) Q x (这是正交相似对角化) (其中 (hat) 是对角矩阵,由于 A 的特征值组成)
  • x' A x = x' Q' (hat) Q x = (Qx)' (hat) (Qx) (其中 (hat) 是对角矩阵,由 A 的特征值组成)
  • 由于 x 是非零向量,Q是正交矩阵,所以 (Qx) 是非零向量
  • 其中 (hat) 是对角矩阵,对角线上元素由 A 的特征值 (lamda) 组成,(lamda) >= 0,因此 (hat) 也是半正定矩阵
  • 于是, (Qx)' (hat) (Qx) >= 0
  • 所以 x' A x >= 0
  • 因此,矩阵 A 是半正定矩阵
  • 证明完毕

up主给的笔记有误,勘误如下:

如下图是判断正定负定、半正定半负定的方法
不对!不对! up 主错了!!!
对角线上的元素有 0 元素,依然可以是半正定矩阵
我们在后面看个例子


栗子在这里:

相关推荐
passxgx11 小时前
11.1 高斯消元法的应用
线性代数·矩阵
在路上看风景1 天前
2.2 列空间和零空间
线性代数
艾莉丝努力练剑1 天前
【优选算法必刷100题】第031~32题(前缀和算法):连续数组、矩阵区域和
大数据·人工智能·线性代数·算法·矩阵·二维前缀和
Beginner x_u1 天前
线性代数 必背公式总结&&线代计算技巧总结_分块矩阵大总结_秩一矩阵大总结
线性代数·矩阵·特征值·特征向量·计算技巧
没书读了1 天前
计算机组成原理-考前记忆清单
线性代数·算法
oscar9991 天前
高等数学第四章 向量代数与空间解析几何
线性代数·矩阵
西西弗Sisyphus3 天前
线性代数 - 初等变换与线性方程组联系(矩阵展示)
线性代数·矩阵
爱代码的小黄人3 天前
代数余子式矩阵和伴随矩阵的区别
线性代数·矩阵
Olafur_zbj4 天前
【AI】矩阵、向量与乘法
人工智能·线性代数·矩阵
sensen_kiss4 天前
INT301 Bio-computation 生物计算(神经网络)Pt.8 主成分分析(PCA)与无监督学习
神经网络·学习·线性代数·机器学习