(done) Positive Semidefinite Matrices 什么是半正定矩阵?如何证明一个矩阵是半正定矩阵? 可以使用特征值

参考视频:https://www.bilibili.com/video/BV1Vg41197ew/?vd_source=7a1a0bc74158c6993c7355c5490fc600

参考资料(半正定矩阵的定义):https://baike.baidu.com/item/半正定矩阵/2152711?fr=ge_ala


看看半正定矩阵的定义:

正定矩阵是 > 0,半正定矩阵是 >= 0

根据定义来看,半正定矩阵也有 "实对称矩阵" 的前提条件


或许我们可以考虑 半正定矩阵性质 和 "特征值特性" 之间的关系,证明方法可以参考之前 "正定矩阵的特征值特性" 的证明方法

首先大胆假设:半正定矩阵 <=> 特征值都 >= 0

那么,设 半正定矩阵 A

先试着证明 半正定矩阵 => 特征值都 >= 0:

  • 对于非零任意特征向量 x, x' A x = x' (lamda) x = (lamda) x'x >= 0
  • 由于特征向量 x 是非零向量,所以 (lamda) >= 0 (可以为 0)
  • 这个方向证明完毕

再试着证明 特征值都 >= 0 ===> 半正定矩阵

  • 对于任意一个非零向量 x,x' A x = x' Q' (hat) Q x (这是正交相似对角化) (其中 (hat) 是对角矩阵,由于 A 的特征值组成)
  • x' A x = x' Q' (hat) Q x = (Qx)' (hat) (Qx) (其中 (hat) 是对角矩阵,由 A 的特征值组成)
  • 由于 x 是非零向量,Q是正交矩阵,所以 (Qx) 是非零向量
  • 其中 (hat) 是对角矩阵,对角线上元素由 A 的特征值 (lamda) 组成,(lamda) >= 0,因此 (hat) 也是半正定矩阵
  • 于是, (Qx)' (hat) (Qx) >= 0
  • 所以 x' A x >= 0
  • 因此,矩阵 A 是半正定矩阵
  • 证明完毕

up主给的笔记有误,勘误如下:

如下图是判断正定负定、半正定半负定的方法
不对!不对! up 主错了!!!
对角线上的元素有 0 元素,依然可以是半正定矩阵
我们在后面看个例子


栗子在这里:

相关推荐
AI科技星2 小时前
光子的几何起源与量子本质:一个源于时空本底运动的统一模型
服务器·人工智能·线性代数·算法·机器学习
张祥6422889044 小时前
线性代数本质笔记七
笔记·线性代数
Zevalin爱灰灰4 小时前
现代控制理论——第三章 线性控制系统的能控性和能观性
线性代数·算法·现代控制
好奇龙猫5 小时前
【大学院-筆記試験練習:线性代数和数据结构(9)】
数据结构·线性代数
haing20196 小时前
卡尔曼滤波(Kalman Filter)原理
线性代数·算法·机器学习
你要飞6 小时前
考研线代第五课:特征值基础与相似对角化
笔记·线性代数·考研·矩阵
yohalaser6 小时前
光伏组件生产线全流程升级 曜华激光源头设备矩阵精准赋能
线性代数·矩阵
Zevalin爱灰灰21 小时前
现代控制理论——绪论
线性代数·现代控制
AI科技星1 天前
时空几何:张祥前统一场论20核心公式深度总结
人工智能·线性代数·算法·机器学习·生活
咋吃都不胖lyh1 天前
Haversine 距离算法详解(零基础友好版)
线性代数·算法·机器学习