(done) Positive Semidefinite Matrices 什么是半正定矩阵?如何证明一个矩阵是半正定矩阵? 可以使用特征值

参考视频:https://www.bilibili.com/video/BV1Vg41197ew/?vd_source=7a1a0bc74158c6993c7355c5490fc600

参考资料(半正定矩阵的定义):https://baike.baidu.com/item/半正定矩阵/2152711?fr=ge_ala


看看半正定矩阵的定义:

正定矩阵是 > 0,半正定矩阵是 >= 0

根据定义来看,半正定矩阵也有 "实对称矩阵" 的前提条件


或许我们可以考虑 半正定矩阵性质 和 "特征值特性" 之间的关系,证明方法可以参考之前 "正定矩阵的特征值特性" 的证明方法

首先大胆假设:半正定矩阵 <=> 特征值都 >= 0

那么,设 半正定矩阵 A

先试着证明 半正定矩阵 => 特征值都 >= 0:

  • 对于非零任意特征向量 x, x' A x = x' (lamda) x = (lamda) x'x >= 0
  • 由于特征向量 x 是非零向量,所以 (lamda) >= 0 (可以为 0)
  • 这个方向证明完毕

再试着证明 特征值都 >= 0 ===> 半正定矩阵

  • 对于任意一个非零向量 x,x' A x = x' Q' (hat) Q x (这是正交相似对角化) (其中 (hat) 是对角矩阵,由于 A 的特征值组成)
  • x' A x = x' Q' (hat) Q x = (Qx)' (hat) (Qx) (其中 (hat) 是对角矩阵,由 A 的特征值组成)
  • 由于 x 是非零向量,Q是正交矩阵,所以 (Qx) 是非零向量
  • 其中 (hat) 是对角矩阵,对角线上元素由 A 的特征值 (lamda) 组成,(lamda) >= 0,因此 (hat) 也是半正定矩阵
  • 于是, (Qx)' (hat) (Qx) >= 0
  • 所以 x' A x >= 0
  • 因此,矩阵 A 是半正定矩阵
  • 证明完毕

up主给的笔记有误,勘误如下:

如下图是判断正定负定、半正定半负定的方法
不对!不对! up 主错了!!!
对角线上的元素有 0 元素,依然可以是半正定矩阵
我们在后面看个例子


栗子在这里:

相关推荐
余~~1853816280015 小时前
矩阵碰一碰发视频的后端源码技术,支持OEM
线性代数·矩阵·音视频
和光同尘@2 天前
74. 搜索二维矩阵(LeetCode 热题 100)
数据结构·c++·线性代数·算法·leetcode·职场和发展·矩阵
跨境卫士小树2 天前
店铺矩阵崩塌前夜:跨境多账号运营的3个生死线
大数据·线性代数·矩阵
亲持红叶3 天前
最优化方法-牛顿法
人工智能·线性代数·机器学习·概率论
sda423423424233 天前
8.【线性代数】——求解Ax=b
线性代数·ax=b
余~~185381628004 天前
短视频矩阵碰一碰发视频源码技术开发,支持OEM
网络·人工智能·线性代数·矩阵·音视频
运筹说4 天前
运筹说 第132期 | 矩阵对策的基本理论
线性代数·矩阵·运筹学
sda423423424234 天前
6.【线性代数】—— 列空间和零空间
线性代数·列空间·零空间
sda423423424234 天前
7.【线性代数】——求解Ax=0,主列和自由列
线性代数·ax=0
sda423423424235 天前
5.【线性代数】—— 转置,置换和向量空间
线性代数