神经网络系列---独热编码(One-Hot Encoding)


文章目录

    • [独热编码(One-Hot Encoding)](#独热编码(One-Hot Encoding))

独热编码(One-Hot Encoding)

是一种常用的数据预处理技术,用于将分类变量转换为计算机易于处理的二进制格式。在机器学习和数据分析中,我们通常会遇到非数值型的特征(例如颜色、性别、国家等),而大多数机器学习算法要求输入的特征是数值型的。因此,我们需要将这些分类变量转换成数值型的表达形式,而独热编码是一种常见的处理方式。

独热编码的处理方法如下:

假设我们有一个分类特征,包含N个不同的取值,那么独热编码将会生成一个N维的二进制向量,其中只有一个维度为1(热)表示当前的取值,其他维度为0(冷)表示非当前取值。

举例说明:

假设有一个颜色的分类特征,可能的取值为"红色"、"蓝色"和"绿色"。

颜色
红色
蓝色
绿色

经过独热编码后,我们会得到下面的三个特征:

红色 蓝色 绿色
1 0 0
0 1 0
0 0 1

可以看到,每一行对应一个样本,而每一列对应一个可能的颜色取值。当某个样本的颜色是某一种取值时,对应的列为1,其他列为0。

独热编码的优点是,它避免了不同类别之间的大小关系被模型所误解。然而,也要注意,在特征空间较大时,独热编码可能会导致高维度的稀疏矩阵,增加了计算和存储的开销。在处理大规模数据时,可以考虑使用其他编码方式或特征选择方法来减少维度和计算负担。

相关推荐
q_30238195563 分钟前
Atlas200赋能水稻病虫害精准识别:AI+边缘计算守护粮食安全
人工智能·边缘计算
芥末章宇4 分钟前
TimeGAN论文精读
论文阅读·人工智能·论文笔记
腾飞开源6 分钟前
40_Spring AI 干货笔记之 Transformers (ONNX) 嵌入
人工智能·huggingface·onnx·transformers·嵌入模型·spring ai·句子转换器
平凡之路无尽路8 分钟前
google11月agent发展白皮书
人工智能·语言模型·自然语言处理·nlp·aigc·ai编程·agi
腾飞开源8 分钟前
41_Spring AI 干货笔记之 OpenAI SDK 嵌入(官方支持)
人工智能·嵌入模型·spring ai·openai sdk·github models·示例控制器·无密码认证
说私域10 分钟前
从“搅局”到“重构”:开源AI智能名片多商户商城小程序对电商生态的范式转型研究
人工智能·重构·开源
艾莉丝努力练剑14 分钟前
【Python基础:语法第六课】Python文件操作安全指南:告别资源泄露与编码乱码
大数据·linux·运维·人工智能·python·安全·pycharm
song50116 分钟前
鸿蒙 Flutter 离线缓存架构:多层缓存与数据一致性
人工智能·分布式·flutter·华为·开源鸿蒙
围炉聊科技18 分钟前
两周实测:Kiro与Trae cn谁是我更中意的AI IDE?
ide·人工智能