神经网络系列---独热编码(One-Hot Encoding)


文章目录

    • [独热编码(One-Hot Encoding)](#独热编码(One-Hot Encoding))

独热编码(One-Hot Encoding)

是一种常用的数据预处理技术,用于将分类变量转换为计算机易于处理的二进制格式。在机器学习和数据分析中,我们通常会遇到非数值型的特征(例如颜色、性别、国家等),而大多数机器学习算法要求输入的特征是数值型的。因此,我们需要将这些分类变量转换成数值型的表达形式,而独热编码是一种常见的处理方式。

独热编码的处理方法如下:

假设我们有一个分类特征,包含N个不同的取值,那么独热编码将会生成一个N维的二进制向量,其中只有一个维度为1(热)表示当前的取值,其他维度为0(冷)表示非当前取值。

举例说明:

假设有一个颜色的分类特征,可能的取值为"红色"、"蓝色"和"绿色"。

颜色
红色
蓝色
绿色

经过独热编码后,我们会得到下面的三个特征:

红色 蓝色 绿色
1 0 0
0 1 0
0 0 1

可以看到,每一行对应一个样本,而每一列对应一个可能的颜色取值。当某个样本的颜色是某一种取值时,对应的列为1,其他列为0。

独热编码的优点是,它避免了不同类别之间的大小关系被模型所误解。然而,也要注意,在特征空间较大时,独热编码可能会导致高维度的稀疏矩阵,增加了计算和存储的开销。在处理大规模数据时,可以考虑使用其他编码方式或特征选择方法来减少维度和计算负担。

相关推荐
qq_242188633210 分钟前
微信小程序AI象棋游戏开发指南
人工智能·微信小程序·小程序
AI英德西牛仔12 分钟前
千问 文心 元宝 Kimi 输出无乱码
人工智能
Caesar Zou14 分钟前
深度学习13:Trustworthy Deep Learning & Adversarial Learning
人工智能
好的收到11119 分钟前
PyTorch深度学习(小土堆)笔记3:小土堆 Dataset 类实战笔记,99% 的新手都踩坑!看完秒懂数据加载底层逻辑!
pytorch·笔记·深度学习
田里的水稻25 分钟前
FA_规划和控制(PC)-A*(规划01)
人工智能·算法·数学建模·机器人·自动驾驶
twilight_46925 分钟前
机器学习与模式识别——Logistic算法
人工智能·算法·机器学习
致Great35 分钟前
使用 GRPO 算法训练多智能体系统:实现可靠的长期任务规划与执行
人工智能·算法·agent·智能体
陈广亮35 分钟前
多 Agent 协作的血泪教训:一次 config.patch 差点弄崩全系统
人工智能
向哆哆40 分钟前
恶性疟原虫显微镜图像的目标检测数据集分享(适用于目标检测任务)
人工智能·目标检测·计算机视觉
张张说点啥1 小时前
能做影视级可商业视频的AI工具,Seedance 2.0 全球首发实测
人工智能·音视频