神经网络系列---独热编码(One-Hot Encoding)


文章目录

    • [独热编码(One-Hot Encoding)](#独热编码(One-Hot Encoding))

独热编码(One-Hot Encoding)

是一种常用的数据预处理技术,用于将分类变量转换为计算机易于处理的二进制格式。在机器学习和数据分析中,我们通常会遇到非数值型的特征(例如颜色、性别、国家等),而大多数机器学习算法要求输入的特征是数值型的。因此,我们需要将这些分类变量转换成数值型的表达形式,而独热编码是一种常见的处理方式。

独热编码的处理方法如下:

假设我们有一个分类特征,包含N个不同的取值,那么独热编码将会生成一个N维的二进制向量,其中只有一个维度为1(热)表示当前的取值,其他维度为0(冷)表示非当前取值。

举例说明:

假设有一个颜色的分类特征,可能的取值为"红色"、"蓝色"和"绿色"。

颜色
红色
蓝色
绿色

经过独热编码后,我们会得到下面的三个特征:

红色 蓝色 绿色
1 0 0
0 1 0
0 0 1

可以看到,每一行对应一个样本,而每一列对应一个可能的颜色取值。当某个样本的颜色是某一种取值时,对应的列为1,其他列为0。

独热编码的优点是,它避免了不同类别之间的大小关系被模型所误解。然而,也要注意,在特征空间较大时,独热编码可能会导致高维度的稀疏矩阵,增加了计算和存储的开销。在处理大规模数据时,可以考虑使用其他编码方式或特征选择方法来减少维度和计算负担。

相关推荐
hongjianMa1 天前
【论文阅读】Hypercomplex Prompt-aware Multimodal Recommendation
论文阅读·python·深度学习·机器学习·prompt·推荐系统
紫小米1 天前
提示词(Prompt)工程与推理优化
人工智能·ai·prompt·ai agent
子非鱼9211 天前
1 NLP导论及环境准备
人工智能·自然语言处理
狠活科技1 天前
Claude Code 重大更新:支持一键原生安装,彻底别了 Node.js
人工智能·aigc·ai编程·claude·claude code
mwq301231 天前
解密“混合专家模型” (MoE) 的全部魔法
人工智能·llm
现在,此刻1 天前
李沐深度学习笔记D3-线性回归
笔记·深度学习·线性回归
能来帮帮蒟蒻吗1 天前
深度学习(2)—— 神经网络与训练
人工智能·深度学习·神经网络
新加坡内哥谈技术1 天前
从文字到世界:空间智能是人工智能的下一个前沿
人工智能
oil欧哟1 天前
文心 5.0 来了,百度大模型的破局之战
前端·人工智能·百度·prompt
玩转AGI1 天前
一文看懂 Agentic AI:搭建单体 vs 多智能体系统,结果出乎意料!
人工智能