神经网络系列---独热编码(One-Hot Encoding)


文章目录

    • [独热编码(One-Hot Encoding)](#独热编码(One-Hot Encoding))

独热编码(One-Hot Encoding)

是一种常用的数据预处理技术,用于将分类变量转换为计算机易于处理的二进制格式。在机器学习和数据分析中,我们通常会遇到非数值型的特征(例如颜色、性别、国家等),而大多数机器学习算法要求输入的特征是数值型的。因此,我们需要将这些分类变量转换成数值型的表达形式,而独热编码是一种常见的处理方式。

独热编码的处理方法如下:

假设我们有一个分类特征,包含N个不同的取值,那么独热编码将会生成一个N维的二进制向量,其中只有一个维度为1(热)表示当前的取值,其他维度为0(冷)表示非当前取值。

举例说明:

假设有一个颜色的分类特征,可能的取值为"红色"、"蓝色"和"绿色"。

颜色
红色
蓝色
绿色

经过独热编码后,我们会得到下面的三个特征:

红色 蓝色 绿色
1 0 0
0 1 0
0 0 1

可以看到,每一行对应一个样本,而每一列对应一个可能的颜色取值。当某个样本的颜色是某一种取值时,对应的列为1,其他列为0。

独热编码的优点是,它避免了不同类别之间的大小关系被模型所误解。然而,也要注意,在特征空间较大时,独热编码可能会导致高维度的稀疏矩阵,增加了计算和存储的开销。在处理大规模数据时,可以考虑使用其他编码方式或特征选择方法来减少维度和计算负担。

相关推荐
攻城狮7号2 分钟前
Resemble AI发布开源语音模型Chatterbox Turbo:让语音助手不再像个机器人
人工智能·chatterbox·resemble-ai·开源语音模型
狮子座明仔3 分钟前
DeepSeek开年王炸:mHC架构——用流形约束重构残差连接的革命性突破
人工智能·语言模型·自然语言处理
是有头发的程序猿8 分钟前
Python爬虫防AI检测实战指南:从基础到高级的规避策略
人工智能·爬虫·python
墨_浅-10 分钟前
分阶段训练金融大模型01-理论基础
人工智能·金融·百度云
咕噜企业分发小米15 分钟前
阿里云和华为云AI教育产品有哪些创新功能?
人工智能·阿里云·华为云
DeepVis Research18 分钟前
【BCI/Consensus】2026年度脑机接口协同与分布式共识机制基准索引 (Benchmark Index)
人工智能·网络安全·数据集·脑机接口·分布式系统
cyyt19 分钟前
深度学习周报(25.12.29~26.1.4)
人工智能·深度学习
自不量力的A同学21 分钟前
Resemble AI 发布开源语音合成模型 Chatterbox Turbo
人工智能
Master_oid21 分钟前
机器学习28:增强式学习(Deep Reinforcement Learn)③
人工智能·学习·机器学习