神经网络系列---独热编码(One-Hot Encoding)


文章目录

    • [独热编码(One-Hot Encoding)](#独热编码(One-Hot Encoding))

独热编码(One-Hot Encoding)

是一种常用的数据预处理技术,用于将分类变量转换为计算机易于处理的二进制格式。在机器学习和数据分析中,我们通常会遇到非数值型的特征(例如颜色、性别、国家等),而大多数机器学习算法要求输入的特征是数值型的。因此,我们需要将这些分类变量转换成数值型的表达形式,而独热编码是一种常见的处理方式。

独热编码的处理方法如下:

假设我们有一个分类特征,包含N个不同的取值,那么独热编码将会生成一个N维的二进制向量,其中只有一个维度为1(热)表示当前的取值,其他维度为0(冷)表示非当前取值。

举例说明:

假设有一个颜色的分类特征,可能的取值为"红色"、"蓝色"和"绿色"。

颜色
红色
蓝色
绿色

经过独热编码后,我们会得到下面的三个特征:

红色 蓝色 绿色
1 0 0
0 1 0
0 0 1

可以看到,每一行对应一个样本,而每一列对应一个可能的颜色取值。当某个样本的颜色是某一种取值时,对应的列为1,其他列为0。

独热编码的优点是,它避免了不同类别之间的大小关系被模型所误解。然而,也要注意,在特征空间较大时,独热编码可能会导致高维度的稀疏矩阵,增加了计算和存储的开销。在处理大规模数据时,可以考虑使用其他编码方式或特征选择方法来减少维度和计算负担。

相关推荐
曾响铃1 分钟前
昭陵六骏IP强势破圈,AI技术如何重塑文旅“基因与骨架”?
人工智能
编码小哥5 分钟前
OpenCV GrabCut前景提取技术详解
人工智能·opencv·计算机视觉
童话名剑9 分钟前
迁移学习示例 和 数据增强(吴恩达深度学习笔记)
笔记·深度学习·数据增强·迁移学习
Coder_Boy_15 分钟前
基于SpringAI企业级智能教学考试平台考试模块全业务闭环方案
java·人工智能·spring boot·aiops
沛沛老爹18 分钟前
Web开发者实战A2A智能体交互协议:从Web API到AI Agent通信新范式
java·前端·人工智能·云原生·aigc·交互·发展趋势
deephub21 分钟前
DeepSeek 开年王炸:mHC 架构用流形约束重构 ResNet 残差连接
人工智能·python·深度学习·神经网络·残差链接
独自归家的兔23 分钟前
基于 豆包大模型 Doubao-Seed-1.6-thinking 的前后端分离项目 - 图文问答(后端)
java·人工智能·豆包
NocoBase24 分钟前
NocoBase 2.0-beta 发布
人工智能·开源·零代码·无代码·版本更新
金井PRATHAMA27 分钟前
格雷马斯语义方阵对人工智能自然语言处理深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
躺柒29 分钟前
2025年12月总结及随笔之海市蜃楼
人工智能·程序人生·读书笔记·个人总结·随笔