神经网络系列---独热编码(One-Hot Encoding)


文章目录

    • [独热编码(One-Hot Encoding)](#独热编码(One-Hot Encoding))

独热编码(One-Hot Encoding)

是一种常用的数据预处理技术,用于将分类变量转换为计算机易于处理的二进制格式。在机器学习和数据分析中,我们通常会遇到非数值型的特征(例如颜色、性别、国家等),而大多数机器学习算法要求输入的特征是数值型的。因此,我们需要将这些分类变量转换成数值型的表达形式,而独热编码是一种常见的处理方式。

独热编码的处理方法如下:

假设我们有一个分类特征,包含N个不同的取值,那么独热编码将会生成一个N维的二进制向量,其中只有一个维度为1(热)表示当前的取值,其他维度为0(冷)表示非当前取值。

举例说明:

假设有一个颜色的分类特征,可能的取值为"红色"、"蓝色"和"绿色"。

颜色
红色
蓝色
绿色

经过独热编码后,我们会得到下面的三个特征:

红色 蓝色 绿色
1 0 0
0 1 0
0 0 1

可以看到,每一行对应一个样本,而每一列对应一个可能的颜色取值。当某个样本的颜色是某一种取值时,对应的列为1,其他列为0。

独热编码的优点是,它避免了不同类别之间的大小关系被模型所误解。然而,也要注意,在特征空间较大时,独热编码可能会导致高维度的稀疏矩阵,增加了计算和存储的开销。在处理大规模数据时,可以考虑使用其他编码方式或特征选择方法来减少维度和计算负担。

相关推荐
CoovallyAIHub11 小时前
搞定边缘AI部署:开源神器RamaLama,让视觉语言模型无处不在
深度学习·算法·计算机视觉
CyberSoma11 小时前
机器人模仿学习运动基元数学编码方法还有用吗?
人工智能·算法·计算机视觉·机器人
机器之心11 小时前
牛津VGG、港大、上交发布ELIP:超越CLIP等,多模态图片检索的增强视觉语言大模型预训练
人工智能·openai
神经星星11 小时前
【TVM 教程】自定义优化
人工智能·机器学习·编程语言
CoovallyAIHub11 小时前
英伟达再出「神作」!黄仁勋华盛顿GTC宣布Vera Rubin超级芯片,联手诺基亚进军6G,市值直逼5万亿美元
深度学习·算法·计算机视觉
陈哥聊测试12 小时前
AI Agent是新一轮「技术泡沫」?
人工智能·程序员·产品
星期天要睡觉12 小时前
提示词(Prompt)——链式思维提示词(Chain-of-Thought Prompting)在大模型中的调用(以 Qwen 模型为例)
开发语言·人工智能·python·语言模型·prompt
掘金安东尼12 小时前
GitHub 发布 Agent HQ:欢迎回家,智能体们
人工智能
说私域12 小时前
基于“开源AI智能名片链动2+1模式S2B2C商城小程序”的会员制培养策略研究
人工智能·小程序
caiyueloveclamp12 小时前
2025年免费aippt排行
人工智能·ai生成ppt·aippt·免费aippt·排行